import os from azure.ai.vision.imageanalysis import ImageAnalysisClient from azure.ai.vision.imageanalysis.models import VisualFeatures from azure.core.credentials import AzureKeyCredential import time import numpy as np import networkx as nx from eval import iou from utils import class_dict, proportion_inside import json from utils import rescale_boxes as rescale import streamlit as st VISION_KEY = st.secrets["VISION_KEY"] VISION_ENDPOINT = st.secrets["VISION_ENDPOINT"] """ #If local execution with open("VISION_KEY.json", "r") as json_file: json_data = json.load(json_file) # Step 2: Parse the JSON data (this is done by json.load automatically) VISION_KEY = json_data["VISION_KEY"] VISION_ENDPOINT = json_data["VISION_ENDPOINT"] """ def sample_ocr_image_file(image_data): # Set the values of your computer vision endpoint and computer vision key # as environment variables: try: endpoint = VISION_ENDPOINT key = VISION_KEY except KeyError: print("Missing environment variable 'VISION_ENDPOINT' or 'VISION_KEY'") print("Set them before running this sample.") exit() # Create an Image Analysis client client = ImageAnalysisClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) # Extract text (OCR) from an image stream. This will be a synchronously (blocking) call. result = client.analyze( image_data=image_data, visual_features=[VisualFeatures.READ] ) return result def text_prediction(image): #transform the image into a byte array image.save('temp.jpg') with open('temp.jpg', 'rb') as f: image_data = f.read() ocr_result = sample_ocr_image_file(image_data) #delete the temporary image os.remove('temp.jpg') return ocr_result def filter_text(ocr_result, threshold=0.5): words_to_cancel = {"+",".",",","#","@","!","?","(",")","[","]","{","}","<",">","/","\\","|","-","_","=","&","^","%","$","£","€","¥","¢","¤","§","©","®","™","°","±","×","÷","¶","∆","∏","∑","∞","√","∫","≈","≠","≤","≥","≡","∼"} # Add every other one-letter word to the list of words to cancel, except 'I' and 'a' for letter in "bcdefghjklmnopqrstuvwxyz1234567890": # All lowercase letters except 'a' words_to_cancel.add(letter) words_to_cancel.add("i") words_to_cancel.add(letter.upper()) # Add the uppercase version as well characters_to_cancel = {"+", "<", ">"} # Characters to cancel list_of_lines = [] for block in ocr_result['readResult']['blocks']: for line in block['lines']: line_text = [] x_min, y_min = float('inf'), float('inf') x_max, y_max = float('-inf'), float('-inf') for word in line['words']: if word['text'] in words_to_cancel or any(disallowed_char in word['text'] for disallowed_char in characters_to_cancel): continue if word['confidence'] > threshold: if word['text']: line_text.append(word['text']) x = [point['x'] for point in word['boundingPolygon']] y = [point['y'] for point in word['boundingPolygon']] x_min = min(x_min, min(x)) y_min = min(y_min, min(y)) x_max = max(x_max, max(x)) y_max = max(y_max, max(y)) if line_text: # If there are valid words in the line list_of_lines.append({ 'text': ' '.join(line_text), 'boundingBox': [x_min,y_min,x_max,y_max] }) list_text = [] list_bbox = [] for i in range(len(list_of_lines)): list_text.append(list_of_lines[i]['text']) for i in range(len(list_of_lines)): list_bbox.append(list_of_lines[i]['boundingBox']) list_of_lines = [list_bbox, list_text] return list_of_lines def get_box_points(box): """Returns all critical points of a box: corners and midpoints of edges.""" xmin, ymin, xmax, ymax = box return np.array([ [xmin, ymin], # Bottom-left corner [xmax, ymin], # Bottom-right corner [xmin, ymax], # Top-left corner [xmax, ymax], # Top-right corner [(xmin + xmax) / 2, ymin], # Midpoint of bottom edge [(xmin + xmax) / 2, ymax], # Midpoint of top edge [xmin, (ymin + ymax) / 2], # Midpoint of left edge [xmax, (ymin + ymax) / 2] # Midpoint of right edge ]) def min_distance_between_boxes(box1, box2): """Computes the minimum distance between two boxes considering all critical points.""" points1 = get_box_points(box1) points2 = get_box_points(box2) min_dist = float('inf') for point1 in points1: for point2 in points2: dist = np.linalg.norm(point1 - point2) if dist < min_dist: min_dist = dist return min_dist def is_inside(box1, box2): """Check if the center of box1 is inside box2.""" x_center = (box1[0] + box1[2]) / 2 y_center = (box1[1] + box1[3]) / 2 return box2[0] <= x_center <= box2[2] and box2[1] <= y_center <= box2[3] def are_close(box1, box2, threshold=50): """Determines if boxes are close based on their corners and center points.""" corners1 = np.array([ [box1[0], box1[1]], [box1[0], box1[3]], [box1[2], box1[1]], [box1[2], box1[3]], [(box1[0]+box1[2])/2, box1[1]], [(box1[0]+box1[2])/2, box1[3]], [box1[0], (box1[1]+box1[3])/2], [box1[2], (box1[1]+box1[3])/2] ]) corners2 = np.array([ [box2[0], box2[1]], [box2[0], box2[3]], [box2[2], box2[1]], [box2[2], box2[3]], [(box2[0]+box2[2])/2, box2[1]], [(box2[0]+box2[2])/2, box2[3]], [box2[0], (box2[1]+box2[3])/2], [box2[2], (box2[1]+box2[3])/2] ]) for c1 in corners1: for c2 in corners2: if np.linalg.norm(c1 - c2) < threshold: return True return False def find_closest_box(text_box, all_boxes, labels, threshold, iou_threshold=0.5): """Find the closest box to the given text box within a specified threshold.""" min_distance = float('inf') closest_index = None #check if the text is inside a sequenceFlow for j in range(len(all_boxes)): if proportion_inside(text_box, all_boxes[j])>iou_threshold and labels[j] == list(class_dict.values()).index('sequenceFlow'): return j for i, box in enumerate(all_boxes): # Compute the center of both boxes center_text = np.array([(text_box[0] + text_box[2]) / 2, (text_box[1] + text_box[3]) / 2]) center_box = np.array([(box[0] + box[2]) / 2, (box[1] + box[3]) / 2]) # Calculate Euclidean distance between centers distance = np.linalg.norm(center_text - center_box) # Update closest box if this box is nearer if distance < min_distance: min_distance = distance closest_index = i # Check if the closest box found is within the acceptable threshold if min_distance < threshold: return closest_index return None def is_vertical(box): """Determine if the text in the bounding box is vertically aligned.""" width = box[2] - box[0] height = box[3] - box[1] return (height > 2*width) def group_texts(task_boxes, text_boxes, texts, min_dist=50, iou_threshold=0.8, percentage_thresh=0.8): """Maps text boxes to task boxes and groups texts within each task based on proximity.""" G = nx.Graph() # Map each text box to the nearest task box task_to_texts = {i: [] for i in range(len(task_boxes))} information_texts = [] # texts not inside any task box text_to_task_mapped = [False] * len(text_boxes) for idx, text_box in enumerate(text_boxes): mapped = False for jdx, task_box in enumerate(task_boxes): if proportion_inside(text_box, task_box)>iou_threshold: task_to_texts[jdx].append(idx) text_to_task_mapped[idx] = True mapped = True break if not mapped: information_texts.append(idx) all_grouped_texts = [] sentence_boxes = [] # Store the bounding box for each sentence # Process texts for each task for task_texts in task_to_texts.values(): G.clear() for i in task_texts: G.add_node(i) for j in task_texts: if i != j and are_close(text_boxes[i], text_boxes[j]) and not is_vertical(text_boxes[i]) and not is_vertical(text_boxes[j]): G.add_edge(i, j) groups = list(nx.connected_components(G)) for group in groups: group = list(group) lines = {} for idx in group: y_center = (text_boxes[idx][1] + text_boxes[idx][3]) / 2 found_line = False for line in lines: if abs(y_center - line) < (text_boxes[idx][3] - text_boxes[idx][1]) / 2: lines[line].append(idx) found_line = True break if not found_line: lines[y_center] = [idx] sorted_lines = sorted(lines.keys()) grouped_texts = [] min_x = min_y = float('inf') max_x = max_y = -float('inf') for line in sorted_lines: sorted_indices = sorted(lines[line], key=lambda idx: text_boxes[idx][0]) line_text = ' '.join(texts[idx] for idx in sorted_indices) grouped_texts.append(line_text) for idx in sorted_indices: box = text_boxes[idx] min_x = min(min_x-5, box[0]-5) min_y = min(min_y-5, box[1]-5) max_x = max(max_x+5, box[2]+5) max_y = max(max_y+5, box[3]+5) all_grouped_texts.append(' '.join(grouped_texts)) sentence_boxes.append([min_x, min_y, max_x, max_y]) # Group information texts G.clear() info_sentence_boxes = [] for i in information_texts: G.add_node(i) for j in information_texts: if i != j and are_close(text_boxes[i], text_boxes[j], percentage_thresh * min_dist) and not is_vertical(text_boxes[i]) and not is_vertical(text_boxes[j]): G.add_edge(i, j) info_groups = list(nx.connected_components(G)) information_grouped_texts = [] for group in info_groups: group = list(group) lines = {} for idx in group: y_center = (text_boxes[idx][1] + text_boxes[idx][3]) / 2 found_line = False for line in lines: if abs(y_center - line) < (text_boxes[idx][3] - text_boxes[idx][1]) / 2: lines[line].append(idx) found_line = True break if not found_line: lines[y_center] = [idx] sorted_lines = sorted(lines.keys()) grouped_texts = [] min_x = min_y = float('inf') max_x = max_y = -float('inf') for line in sorted_lines: sorted_indices = sorted(lines[line], key=lambda idx: text_boxes[idx][0]) line_text = ' '.join(texts[idx] for idx in sorted_indices) grouped_texts.append(line_text) for idx in sorted_indices: box = text_boxes[idx] min_x = min(min_x, box[0]) min_y = min(min_y, box[1]) max_x = max(max_x, box[2]) max_y = max(max_y, box[3]) information_grouped_texts.append(' '.join(grouped_texts)) info_sentence_boxes.append([min_x, min_y, max_x, max_y]) return all_grouped_texts, sentence_boxes, information_grouped_texts, info_sentence_boxes def mapping_text(full_pred, text_pred, print_sentences=False,percentage_thresh=0.6,scale=1.0, iou_threshold=0.5): ########### REFAIRE CETTE FONCTION ########### #refaire la fonction pour qu'elle prenne en premier les elements qui sont dans les task et ensuite prendre un seuil de distance pour les autres elements #ou sinon faire la distance entre les elements et non pas seulement les tasks # Example usage boxes = rescale(scale, full_pred['boxes']) min_dist = 200 labels = full_pred['labels'] avoid = [list(class_dict.values()).index('pool'), list(class_dict.values()).index('lane'), list(class_dict.values()).index('sequenceFlow'), list(class_dict.values()).index('messageFlow'), list(class_dict.values()).index('dataAssociation')] for i in range(len(boxes)): box1 = boxes[i] if labels[i] in avoid: continue for j in range(i + 1, len(boxes)): box2 = boxes[j] if labels[j] in avoid: continue dist = min_distance_between_boxes(box1, box2) min_dist = min(min_dist, dist) #print("Minimum distance between boxes:", min_dist) text_pred[0] = rescale(scale, text_pred[0]) task_boxes = [box for i, box in enumerate(boxes) if full_pred['labels'][i] == list(class_dict.values()).index('task')] grouped_sentences, sentence_bounding_boxes, info_texts, info_boxes = group_texts(task_boxes, text_pred[0], text_pred[1], min_dist=min_dist) BPMN_id = set(full_pred['BPMN_id']) # This ensures uniqueness of task names text_mapping = {id: '' for id in BPMN_id} if print_sentences: for sentence, box in zip(grouped_sentences, sentence_bounding_boxes): print("Task-related Text:", sentence) print("Bounding Box:", box) print("Information Texts:", info_texts) print("Information Bounding Boxes:", info_boxes) # Map the grouped sentences to the corresponding task for i in range(len(sentence_bounding_boxes)): for j in range(len(boxes)): if proportion_inside(sentence_bounding_boxes[i], boxes[j])>iou_threshold and full_pred['labels'][j] == list(class_dict.values()).index('task'): text_mapping[full_pred['BPMN_id'][j]]=grouped_sentences[i] # Map the grouped sentences to the corresponding pool for i in range(len(info_boxes)): if is_vertical(info_boxes[i]): for j in range(len(boxes)): if proportion_inside(info_boxes[i], boxes[j])>0 and full_pred['labels'][j] == list(class_dict.values()).index('pool'): print("Text:", info_texts[i], "associate with ", full_pred['BPMN_id'][j]) bpmn_id = full_pred['BPMN_id'][j] # Append new text or create new entry if not existing if bpmn_id in text_mapping: text_mapping[bpmn_id] += " " + info_texts[i] # Append text with a space in between else: text_mapping[bpmn_id] = info_texts[i] info_texts[i] = '' # Clear the text to avoid re-use # Map the grouped sentences to the corresponding object for i in range(len(info_boxes)): if is_vertical(info_boxes[i]): continue # Skip if the text is vertical for j in range(len(boxes)): if info_texts[i] == '': continue # Skip if there's no text if (proportion_inside(info_boxes[i], boxes[j])>0 or are_close(info_boxes[i], boxes[j], threshold=percentage_thresh*min_dist)) and (full_pred['labels'][j] == list(class_dict.values()).index('event') or full_pred['labels'][j] == list(class_dict.values()).index('messageEvent') or full_pred['labels'][j] == list(class_dict.values()).index('timerEvent') or full_pred['labels'][j] == list(class_dict.values()).index('dataObject')) : bpmn_id = full_pred['BPMN_id'][j] # Append new text or create new entry if not existing if bpmn_id in text_mapping: text_mapping[bpmn_id] += " " + info_texts[i] # Append text with a space in between else: text_mapping[bpmn_id] = info_texts[i] info_texts[i] = '' # Clear the text to avoid re-use # Map the grouped sentences to the corresponding flow for i in range(len(info_boxes)): if info_texts[i] == '' or is_vertical(info_boxes[i]): continue # Skip if there's no text # Find the closest box within the defined threshold closest_index = find_closest_box(info_boxes[i], boxes, full_pred['labels'], threshold=4*min_dist) if closest_index is not None and (full_pred['labels'][closest_index] == list(class_dict.values()).index('sequenceFlow') or full_pred['labels'][closest_index] == list(class_dict.values()).index('messageFlow')): bpmn_id = full_pred['BPMN_id'][closest_index] # Append new text or create new entry if not existing if bpmn_id in text_mapping: text_mapping[bpmn_id] += " " + info_texts[i] # Append text with a space in between else: text_mapping[bpmn_id] = info_texts[i] info_texts[i] = '' # Clear the text to avoid re-use if print_sentences: print("Text Mapping:", text_mapping) print("Information Texts left:", info_texts) return text_mapping