import xml.etree.ElementTree as ET from modules.utils import class_dict from xml.dom import minidom from modules.utils import error from modules.OCR import analyze_sentiment def rescale(scale, boxes): """ Rescale the coordinates of the bounding boxes by a given scale factor. Args: scale (float): The scale factor to apply. boxes (list): List of bounding boxes to be rescaled. Returns: list: Rescaled bounding boxes. """ for i in range(len(boxes)): boxes[i] = [boxes[i][0] * scale, boxes[i][1] * scale, boxes[i][2] * scale, boxes[i][3] * scale] return boxes def create_BPMN_id(data): """ Create unique BPMN IDs for each element in the data based on their types. Args: data (dict): Dictionary containing labels and links of elements. Returns: dict: Updated data with BPMN IDs assigned. """ enum_end, enum_start, enum_task, enum_sequence, enum_dataflow, enum_messflow, enum_messageEvent, enum_exclusiveGateway, enum_parallelGateway, enum_pool = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 BPMN_name = [class_dict[data['labels'][i]] for i in range(len(data['labels']))] for idx, Bpmn_id in enumerate(BPMN_name): if Bpmn_id == 'event': if data['links'][idx][0] is not None and data['links'][idx][1] is None: data['BPMN_id'][idx] = f'end_event_{enum_end}' enum_end += 1 elif data['links'][idx][0] is None and data['links'][idx][1] is not None: data['BPMN_id'][idx] = f'start_event_{enum_start}' enum_start += 1 elif Bpmn_id == 'task' or Bpmn_id == 'dataObject': data['BPMN_id'][idx] = f'task_{enum_task}' enum_task += 1 elif Bpmn_id == 'sequenceFlow': data['BPMN_id'][idx] = f'sequenceFlow_{enum_sequence}' enum_sequence += 1 elif Bpmn_id == 'messageFlow': data['BPMN_id'][idx] = f'messageFlow_{enum_messflow}' enum_messflow += 1 elif Bpmn_id == 'messageEvent': data['BPMN_id'][idx] = f'message_event_{enum_messageEvent}' enum_messageEvent += 1 elif Bpmn_id == 'exclusiveGateway': data['BPMN_id'][idx] = f'exclusiveGateway_{enum_exclusiveGateway}' enum_exclusiveGateway += 1 elif Bpmn_id == 'parallelGateway': data['BPMN_id'][idx] = f'parallelGateway_{enum_parallelGateway}' enum_parallelGateway += 1 elif Bpmn_id == 'dataAssociation': data['BPMN_id'][idx] = f'dataAssociation_{enum_sequence}' enum_dataflow += 1 elif Bpmn_id == 'pool': data['BPMN_id'][idx] = f'pool_{enum_pool}' enum_pool += 1 return data def check_end(link): """ Check if a link represents an end event. Args: link (tuple): A link containing indices of connected elements. Returns: bool: True if the link represents an end event, False otherwise. """ if link[1] is None: return True return False def connect(data, text_mapping, i): """ Connect elements based on their links and generate the corresponding text mapping. Args: data (dict): Data containing links and BPMN IDs. text_mapping (dict): Mapping of BPMN IDs to their text descriptions. i (int): Index of the current element. Returns: tuple: Current text, next texts, and next ID. """ next_text = [] target_idx = data['links'][i][1] # Check if the target index is valid if target_idx == None or target_idx >= len(data['links']): error('There may be an error with the Vizi file, care when you download it.') return None, None, None current_id = data['BPMN_id'][i] current_text = text_mapping[current_id] next_idx = data['links'][target_idx][1] next_id = data['BPMN_id'][next_idx] if next_id.split('_')[0] == 'exclusiveGateway': for idx, link in enumerate(data['links']): if link[0] == next_idx and link[1] is not None: next_text.append(text_mapping[data['BPMN_id'][link[1]]]) elif next_id.split('_')[0] == 'parallelGateway': for idx, link in enumerate(data['links']): if link[0] == next_idx and link[1] is not None: next_text.append(text_mapping[data['BPMN_id'][link[1]]]) else: next_text.append(text_mapping[next_id]) return current_text, next_text, next_id def check_start(val): """ Check if a link represents a start event. Args: val (tuple): A link containing indices of connected elements. Returns: bool: True if the link represents a start event, False otherwise. """ if val[0] is None: return True return False def find_merge(bpmn_id, links): """ Identify merge points in the BPMN diagram. Args: bpmn_id (list): List of BPMN IDs. links (list): List of links between elements. Returns: list: List indicating merge points. """ merge = [] for idx, link in enumerate(links): next_element = link[1] if next_element is None: merge.append(None) continue next_object = links[next_element][1] if next_object is None: merge.append(None) continue if bpmn_id[next_object].split('_')[0] == 'parallelGateway': merge.append(bpmn_id[next_object]) else: merge.append(None) merge_elements = merge.copy() for idx, element in enumerate(merge): if element is None: merge_elements[idx] = False continue # Count how many times the element is in the list count = merge.count(element) if count > 1: merge_elements[idx] = True else: merge_elements[idx] = False return merge_elements def find_positive_end(bpmn_ids, links, text_mapping): """ Find the positive end event based on sentiment analysis. Args: bpmn_ids (list): List of BPMN IDs. links (list): List of links between elements. text_mapping (dict): Mapping of BPMN IDs to their text descriptions. Returns: str: BPMN ID of the positive end event. """ emotion_data = [] for idx, bpmn_id in enumerate(bpmn_ids): if idx >= len(links): continue if check_end(links[idx]) and (bpmn_id.split('_')[0] in ['event', 'message']): # Perform sentiment analysis and get the highest scoring emotion and its score between positive and negative highest_emotion, highest_score = analyze_sentiment(text_mapping[bpmn_id]) emotion_data.append((bpmn_id, highest_emotion, highest_score)) # Sort by emotion label with 'positive' first and 'negative' second, # then by score in descending order sorted_emotions = sorted(emotion_data, key=lambda x: (x[1] != 'positive', -x[2])) return sorted_emotions[0][0] if len(sorted_emotions) > 0 else None def find_best_direction(texts_list): """ Find the best direction based on sentiment analysis. Args: texts_list (list): List of texts to analyze. Returns: str: Text with the best (positive) sentiment. """ emotion_data = [] for text in texts_list: highest_emotion, highest_score = analyze_sentiment(text) emotion_data.append((text, highest_emotion, highest_score)) # Sort by emotion label with 'positive' first and 'negative' second, # then by score in descending order sorted_emotions = sorted(emotion_data, key=lambda x: (x[1] != 'positive', -x[2])) return sorted_emotions[0][0] if len(sorted_emotions) > 0 else None def create_wizard_file(data, text_mapping): """ Create a wizard file for BPMN modeling based on the provided data and text mappings. Args: data (dict): Data containing BPMN elements and their properties. text_mapping (dict): Mapping of BPMN IDs to their text descriptions. Returns: str: Pretty-printed XML string of the wizard file. """ not_change = ['pool','sequenceFlow','messageFlow','dataAssociation'] # Add a name into the text_mapping when there is no name for idx, key in enumerate(text_mapping.keys()): if text_mapping[key] == '' and key.split('_')[0] not in not_change: text_mapping[key] = f'unnamed_{key}' root = ET.Element('methodAndStyleWizard') modelName = ET.SubElement(root, 'modelName') modelName.text = 'My Diagram' author = ET.SubElement(root, 'author') author.text = 'sketch-to-BPMN' # Add pools to the collaboration element for idx, (pool_index, keep_elements) in enumerate(data['pool_dict'].items()): pool_id = f'participant_{idx+1}' pool = ET.SubElement(root, 'processName') pool.text = text_mapping[pool_index] processDescription = ET.SubElement(root, 'processDescription') first = False for idx, Bpmn_id in enumerate(data['BPMN_id']): # Start Event element_type = Bpmn_id.split('_')[0] if element_type == 'message': eventType = 'Message' elif element_type == 'event': eventType = 'None' if idx >= len(data['links']): continue if check_start(data['links'][idx]) and (element_type == 'event' or element_type == 'message'): if text_mapping[Bpmn_id] == '': text_mapping[Bpmn_id] = 'start' startEvent = ET.SubElement(root, 'startEvent', attrib={'name': text_mapping[Bpmn_id], 'eventType': eventType, 'isRegular': 'True'}) requestMessage = ET.SubElement(root, 'requestMessage') requester = ET.SubElement(root, 'requester') endEvents = ET.SubElement(root, 'endStates') positive_end = find_positive_end(data['BPMN_id'], data['links'], text_mapping) if positive_end is not None: print("Best end is: ", text_mapping[positive_end]) # Add end states event to the collaboration element for idx, Bpmn_id in enumerate(data['BPMN_id']): # End States if idx >= len(data['links']): continue if check_end(data['links'][idx]) and (Bpmn_id.split('_')[0] == 'event' or Bpmn_id.split('_')[0] == 'message'): if text_mapping[Bpmn_id] == '': text_mapping[Bpmn_id] = '(unnamed)' if Bpmn_id == positive_end: ET.SubElement(endEvents, 'endState', attrib={'name': text_mapping[Bpmn_id], 'eventType': 'None', 'isRegular': 'True'}) else: ET.SubElement(endEvents, 'endState', attrib={'name': text_mapping[Bpmn_id], 'eventType': 'None', 'isRegular': 'False'}) # Add activities to the collaboration element activities = ET.SubElement(root, 'activities') for idx, activity_name in enumerate(data['BPMN_id']): if activity_name.startswith('task'): activity = ET.SubElement(activities, 'activity', attrib={'name': text_mapping.get(activity_name, activity_name), 'performer': ''}) endStates = ET.SubElement(activity, 'endStates') current_text, next_text, next_id = connect(data, text_mapping, idx) if next_text is not None and len(next_text) == 1: ET.SubElement(endStates, 'endState', attrib={'name': next_text[0], 'isRegular': 'True'}) elif next_text is not None and len(next_text) >= 2 and next_id.split('_')[0] == 'exclusiveGateway': best_direction = find_best_direction(next_text) if best_direction is not None: print("Best direction is: ", best_direction) for i in range(len(next_text)): if next_text[i] == best_direction: ET.SubElement(endStates, 'endState', attrib={'name': next_text[i], 'isRegular': 'True'}) else: ET.SubElement(endStates, 'endState', attrib={'name': next_text[i], 'isRegular': 'False'}) ET.SubElement(activity, 'subActivities') ET.SubElement(activity, 'subActivityFlows') ET.SubElement(activity, 'messageFlows') merge_object = find_merge(data['BPMN_id'], data['links']) activityFlows = ET.SubElement(root, 'activityFlows') for i, link in enumerate(data['links']): # create flow with start event if link[0] is None and link[1] is not None and (data['BPMN_id'][i].split('_')[0] == 'event' or data['BPMN_id'][i].split('_')[0] == 'message'): current_text, next_text, _ = connect(data, text_mapping, i) if current_text is None or next_text is None: continue ET.SubElement(activityFlows, 'activityFlow', attrib={'startEvent': current_text, 'endState': '---', 'target': next_text[0], 'isMerging': 'False', 'isPredefined': 'True'}) continue # create flow with tasks if link[0] is not None and link[1] is not None and data['BPMN_id'][i].split('_')[0] == 'task': current_text, next_text, next_id = connect(data, text_mapping, i) if current_text is None or next_text is None: continue if merge_object[i] == True: merge = 'True' else: merge = 'False' if len(next_text) == 2 and next_id.split('_')[0] == 'exclusiveGateway': ET.SubElement(activityFlows, 'activityFlow', attrib={'activity': current_text, 'endState': next_text[0], 'target': next_text[0], 'isMerging': 'False', 'isPredefined': 'True'}) ET.SubElement(activityFlows, 'activityFlow', attrib={'activity': current_text, 'endState': next_text[1], 'target': next_text[1], 'isMerging': 'False', 'isPredefined': 'True'}) elif len(next_text) > 1 and next_id.split('_')[0] == 'parallelGateway': for next in next_text: ET.SubElement(activityFlows, 'activityFlow', attrib={'activity': current_text, 'endState': '---', 'target': next, 'isMerging': merge, 'isPredefined': 'True'}) elif len(next_text) == 1: ET.SubElement(activityFlows, 'activityFlow', attrib={'activity': current_text, 'endState': '---', 'target': next_text[0], 'isMerging': merge, 'isPredefined': 'True'}) else: ET.SubElement(activityFlows, 'activityFlow', attrib={'activity': current_text, 'endState': '---', 'target': next_text, 'isMerging': merge, 'isPredefined': 'True'}) ET.SubElement(root, 'participants') # Pretty print the XML pwm_str = ET.tostring(root, encoding='utf-8', method='xml') pretty_pwm_str = minidom.parseString(pwm_str).toprettyxml(indent=" ") return pretty_pwm_str