Spaces:
Running
Running
Commit
·
422ddbf
1
Parent(s):
2fd58b0
Review list tuples dic
Browse filesScript with examples of tuple lists and dictionaries
- Review_list_tuples_dic.ipynb +303 -0
Review_list_tuples_dic.ipynb
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"cadena = \"El/DT gato/N come/V pescado/N de/P la/DT nevera/N y/C de/P la/DT lata/N y/C baila/V el/DT la/N la/N la/N ./Fp\""
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "markdown",
|
14 |
+
"metadata": {},
|
15 |
+
"source": [
|
16 |
+
"1) Obtener un diccionario, que para cada categoría, muestre su frecuencia. Ordenar el resultado alfabéticamente por categoría."
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 2,
|
22 |
+
"metadata": {},
|
23 |
+
"outputs": [],
|
24 |
+
"source": [
|
25 |
+
"cadenaS = cadena.split(' ')"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 3,
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [
|
33 |
+
{
|
34 |
+
"name": "stdout",
|
35 |
+
"output_type": "stream",
|
36 |
+
"text": [
|
37 |
+
"C 2\n",
|
38 |
+
"DT 4\n",
|
39 |
+
"Fp 1\n",
|
40 |
+
"N 7\n",
|
41 |
+
"P 2\n",
|
42 |
+
"V 2\n"
|
43 |
+
]
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"source": [
|
47 |
+
"diccionario = {}\n",
|
48 |
+
"\n",
|
49 |
+
"for i in cadenaS:\n",
|
50 |
+
" separacion = i.split(\"/\")\n",
|
51 |
+
" try:\n",
|
52 |
+
" diccionario[separacion[1]] = diccionario[separacion[1]] + 1\n",
|
53 |
+
" except:\n",
|
54 |
+
" diccionario[separacion[1]] = 1\n",
|
55 |
+
" \n",
|
56 |
+
" \n",
|
57 |
+
"#1 primer punto.\n",
|
58 |
+
"\n",
|
59 |
+
"for s in sorted(diccionario):\n",
|
60 |
+
" print(s,diccionario[s])"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "markdown",
|
65 |
+
"metadata": {},
|
66 |
+
"source": [
|
67 |
+
"Generemos un diccionario para cada palabra de \"cadena\", mostremos la frecuencia y una lista de sus categorías morfosintácticas con su frecuencia. Imprimimos el resultado ordenado alfabeticamente."
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "markdown",
|
72 |
+
"metadata": {},
|
73 |
+
"source": [
|
74 |
+
"diccionario = {}\n",
|
75 |
+
"\n",
|
76 |
+
"for i in cadenaS:\n",
|
77 |
+
" separacion = i.split(\"/\")\n",
|
78 |
+
" separacion[0] = separacion[0].lower()\n",
|
79 |
+
"\n",
|
80 |
+
" if separacion[0] not in diccionario:\n",
|
81 |
+
" diccionario[separacion[0]] = {}\n",
|
82 |
+
"\n",
|
83 |
+
" if separacion[1] in diccionario[separacion[0]]:\n",
|
84 |
+
" diccionario[separacion[0]][separacion[1]] += 1 \n",
|
85 |
+
" else:\n",
|
86 |
+
" diccionario[separacion[0]][separacion[1]] = 1 \n",
|
87 |
+
"\n",
|
88 |
+
"\n",
|
89 |
+
"for s in sorted(diccionario.keys()):\n",
|
90 |
+
" tmp = 0\n",
|
91 |
+
" salida = \"\"\n",
|
92 |
+
" for j in diccionario[s].keys():\n",
|
93 |
+
" tmp += diccionario[s][j]\n",
|
94 |
+
" salida += \" \"+j+\" \"+str(diccionario[s][j])\n",
|
95 |
+
"\n",
|
96 |
+
"\n",
|
97 |
+
" print(s,tmp,salida)"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "markdown",
|
102 |
+
"metadata": {},
|
103 |
+
"source": [
|
104 |
+
"Calculamos la frecuencia de todos los bigramas de la cadena, teniendo en cuenta un símbolo inicial `<S>` y un simbolo final `</S>` para la cadena.\n",
|
105 |
+
"\n",
|
106 |
+
"```\n",
|
107 |
+
"('DT', 'N') 4\n",
|
108 |
+
" ('N', 'V') 1\n",
|
109 |
+
" ('N', 'C') 2\n",
|
110 |
+
" ('N', 'Fp') 1\n",
|
111 |
+
" ('N', 'N') 2\n",
|
112 |
+
" ('C', 'V') 1\n",
|
113 |
+
" ('V', 'N') 1\n",
|
114 |
+
" ('V', 'DT') 1\n",
|
115 |
+
" ('P', 'DT') 2\n",
|
116 |
+
" ('Fp', '</S>') 1\n",
|
117 |
+
" ('<S>', 'DT') 1\n",
|
118 |
+
" ('C', 'P') 1\n",
|
119 |
+
" ('N', 'P') 1\n",
|
120 |
+
"```"
|
121 |
+
]
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"cell_type": "code",
|
125 |
+
"execution_count": 4,
|
126 |
+
"metadata": {},
|
127 |
+
"outputs": [
|
128 |
+
{
|
129 |
+
"name": "stdout",
|
130 |
+
"output_type": "stream",
|
131 |
+
"text": [
|
132 |
+
"('<S>', 'DT') 1\n",
|
133 |
+
"('DT', 'N') 4\n",
|
134 |
+
"('N', 'V') 1\n",
|
135 |
+
"('V', 'N') 1\n",
|
136 |
+
"('N', 'P') 1\n",
|
137 |
+
"('P', 'DT') 2\n",
|
138 |
+
"('N', 'C') 2\n",
|
139 |
+
"('C', 'P') 1\n",
|
140 |
+
"('C', 'V') 1\n",
|
141 |
+
"('V', 'DT') 1\n",
|
142 |
+
"('N', 'N') 2\n",
|
143 |
+
"('N', 'Fp') 1\n",
|
144 |
+
"('Fp', '</S>') 1\n"
|
145 |
+
]
|
146 |
+
}
|
147 |
+
],
|
148 |
+
"source": [
|
149 |
+
"diccionario = {}\n",
|
150 |
+
"bigramas = []\n",
|
151 |
+
"\n",
|
152 |
+
"#cosa = [\"<S>\"] + [ (cadenaS[0].split(\"/\")[1],cadenaS[i+1].split(\"/\")[1]) if (i+1) < len(cadenaS) else [] for i in range(len(cadenaS)) ] + [\"</S>\"] \n",
|
153 |
+
"cosa = [\"<S>\"] + [ i.split(\"/\")[1] for i in cadenaS ] + [\"</S>\"] \n",
|
154 |
+
"\n",
|
155 |
+
"#\"El/DT perro/N come/V carne/N de/P la/DT carnicería/N y/C de/P la/DT nevera/N y/C canta/V el/DT la/N la/N la/N ./Fp\"\n",
|
156 |
+
"#print(cosa)\n",
|
157 |
+
"\n",
|
158 |
+
"l = len(cosa)\n",
|
159 |
+
"\n",
|
160 |
+
"for i in range(l):\n",
|
161 |
+
" if (i+1) < l:\n",
|
162 |
+
" bigramas += [(cosa[i],cosa[i+1])]\n",
|
163 |
+
" else:\n",
|
164 |
+
" break\n",
|
165 |
+
"\n",
|
166 |
+
"\n",
|
167 |
+
"for i in bigramas:\n",
|
168 |
+
" if i not in diccionario:\n",
|
169 |
+
" diccionario[i] = 1\n",
|
170 |
+
" else:\n",
|
171 |
+
" diccionario[i] += 1\n",
|
172 |
+
"\n",
|
173 |
+
"for i in diccionario.keys():\n",
|
174 |
+
" print(i,diccionario[i])"
|
175 |
+
]
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"cell_type": "markdown",
|
179 |
+
"metadata": {},
|
180 |
+
"source": [
|
181 |
+
"Ahora construimos una función que devuelva las probabilidades léxicas P(C|w) y de emisión P(w|C) para una palabra dada (w) para todas sus categorías (C) que aparecen en el diccionario construido anteriormente. Si la palabra no existe en el diccionario debe decir que la palabra es desconocida.\n",
|
182 |
+
"\n",
|
183 |
+
"```\n",
|
184 |
+
"Por ejemplo, para la palabra w=”la”, debería devolver:\n",
|
185 |
+
" P( DT | la )= 0.400000\n",
|
186 |
+
" P( N | la )= 0.600000\n",
|
187 |
+
" P( la | DT )= 0.500000\n",
|
188 |
+
" P( la | N )= 0.428571\n",
|
189 |
+
"```"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"cell_type": "code",
|
194 |
+
"execution_count": 5,
|
195 |
+
"metadata": {},
|
196 |
+
"outputs": [],
|
197 |
+
"source": [
|
198 |
+
"def lex(w,cased=True):\n",
|
199 |
+
" diccionario = {}\n",
|
200 |
+
"\n",
|
201 |
+
" #iteracion = 0\n",
|
202 |
+
" for i in cadenaS:\n",
|
203 |
+
" separacion = i.split('/')\n",
|
204 |
+
" if cased == False:\n",
|
205 |
+
" w = w.lower()\n",
|
206 |
+
" separacion[0] = separacion[0].lower()\n",
|
207 |
+
" \n",
|
208 |
+
" if separacion[1] not in diccionario:\n",
|
209 |
+
" diccionario[separacion[1]] = {\"cantidad\" : 1}\n",
|
210 |
+
" if separacion[0] not in diccionario[separacion[1]] and separacion[0] == w:\n",
|
211 |
+
" diccionario[separacion[1]][separacion[0]] = 1\n",
|
212 |
+
" elif separacion[0] == w:\n",
|
213 |
+
" diccionario[separacion[1]][separacion[0]] += 1\n",
|
214 |
+
" else:\n",
|
215 |
+
" diccionario[separacion[1]][\"cantidad\"] += 1\n",
|
216 |
+
" if w not in diccionario[separacion[1]] and separacion[0] == w:\n",
|
217 |
+
" diccionario[separacion[1]][separacion[0]] = 1\n",
|
218 |
+
" elif separacion[0] == w:\n",
|
219 |
+
" diccionario[separacion[1]][separacion[0]] += 1\n",
|
220 |
+
" \n",
|
221 |
+
" if w not in diccionario and w == separacion[0]:\n",
|
222 |
+
" diccionario[w] = {\"cantidad\":1}\n",
|
223 |
+
" if separacion[1] not in diccionario[w]:\n",
|
224 |
+
" diccionario[w][separacion[1]] = 1\n",
|
225 |
+
" else:\n",
|
226 |
+
" diccionario[w][separacion[1]] += 1\n",
|
227 |
+
" elif w == separacion[0]:\n",
|
228 |
+
" diccionario[w][\"cantidad\"] += 1\n",
|
229 |
+
" if separacion[1] not in diccionario[w]:\n",
|
230 |
+
" diccionario[w][separacion[1]] = 1\n",
|
231 |
+
" else:\n",
|
232 |
+
" diccionario[w][separacion[1]] += 1\n",
|
233 |
+
"\n",
|
234 |
+
" \n",
|
235 |
+
" #print(iteracion,diccionario)\n",
|
236 |
+
" #iteracion += 1\n",
|
237 |
+
" \n",
|
238 |
+
" for i in diccionario.keys():\n",
|
239 |
+
" if w in diccionario[i]:\n",
|
240 |
+
" probWC = diccionario[i][w]/diccionario[i][\"cantidad\"]\n",
|
241 |
+
" print(\"P(\", w, \"|\", i, \") = \", probWC) # P( la | N )= 0.428571\n",
|
242 |
+
"\n",
|
243 |
+
" if i == w:\n",
|
244 |
+
" for categoria in diccionario[w]:\n",
|
245 |
+
" probCW = diccionario[w][categoria] / diccionario[w][\"cantidad\"]\n",
|
246 |
+
" if categoria != \"cantidad\":\n",
|
247 |
+
" print(\"P(\", categoria, \"|\", w, \") = \", probCW) #P( DT | la )= 0.400000"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"execution_count": 6,
|
253 |
+
"metadata": {},
|
254 |
+
"outputs": [
|
255 |
+
{
|
256 |
+
"name": "stdout",
|
257 |
+
"output_type": "stream",
|
258 |
+
"text": [
|
259 |
+
"P( la | DT ) = 0.5\n",
|
260 |
+
"P( la | N ) = 0.42857142857142855\n",
|
261 |
+
"P( DT | la ) = 0.4\n",
|
262 |
+
"P( N | la ) = 0.6\n"
|
263 |
+
]
|
264 |
+
}
|
265 |
+
],
|
266 |
+
"source": [
|
267 |
+
"lex(\"la\",True)"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"execution_count": null,
|
273 |
+
"metadata": {},
|
274 |
+
"outputs": [],
|
275 |
+
"source": []
|
276 |
+
}
|
277 |
+
],
|
278 |
+
"metadata": {
|
279 |
+
"interpreter": {
|
280 |
+
"hash": "6e5e0e4de587a08ae1fd499d48602c29fc81255ce67beabc6badfa0dc31fba78"
|
281 |
+
},
|
282 |
+
"kernelspec": {
|
283 |
+
"display_name": "Python 3.6.13 ('myenv')",
|
284 |
+
"language": "python",
|
285 |
+
"name": "python3"
|
286 |
+
},
|
287 |
+
"language_info": {
|
288 |
+
"codemirror_mode": {
|
289 |
+
"name": "ipython",
|
290 |
+
"version": 3
|
291 |
+
},
|
292 |
+
"file_extension": ".py",
|
293 |
+
"mimetype": "text/x-python",
|
294 |
+
"name": "python",
|
295 |
+
"nbconvert_exporter": "python",
|
296 |
+
"pygments_lexer": "ipython3",
|
297 |
+
"version": "3.6.13"
|
298 |
+
},
|
299 |
+
"orig_nbformat": 4
|
300 |
+
},
|
301 |
+
"nbformat": 4,
|
302 |
+
"nbformat_minor": 2
|
303 |
+
}
|