4M / app.py
Roman Bachmann
Initial commit
57876e1
raw
history blame
6.85 kB
import os
try:
# Try to install detectron2 from source. Needed for semseg plotting functionality.
os.system("python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'")
except Exception as e:
print('detectron2 cannot be installed. Falling back to simple semseg visualization.')
print(e)
import torch
# We recommend running this demo on an A100 GPU
if torch.cuda.is_available():
device = "cuda"
gpu_type = torch.cuda.get_device_name(torch.cuda.current_device())
power_device = f"{gpu_type} GPU"
torch.cuda.max_memory_allocated(device=device)
else:
device = "cpu"
power_device = "CPU"
os.system("pip uninstall -y xformers") # Only use xformers on GPU
import spaces
import gradio as gr
import random
import numpy as np
from torchvision.transforms.functional import center_crop
from fourm.demo_4M_sampler import Demo4MSampler
from fourm.data.modality_transforms import RGBTransform
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True
MAX_SEED = np.iinfo(np.int32).max
FM_MODEL_ID = 'EPFL-VILAB/4M-21_B'
MODEL_NAME = FM_MODEL_ID.split('/')[1].replace('_', ' ')
# Human poses visualization is disabled, since it needs SMPL weights. To enable human pose prediction and rendering:
# 1) Install via `pip install timm yacs smplx pyrender pyopengl==3.1.4`
# You may need to follow the pyrender install instructions: https://pyrender.readthedocs.io/en/latest/install/index.html
# 2) Download SMPL data from https://smpl.is.tue.mpg.de/. See https://github.com/shubham-goel/4D-Humans/ for an example
# 3) Copy the required SMPL files (smpl_mean_params.npz, SMPL_to_J19.pkl, smpl/SMPL_NEUTRAL.pkl) to fourm/utils/hmr2_utils/data .
sampler = Demo4MSampler(
fm=FM_MODEL_ID,
fm_sr=None,
tok_human_poses=None,
tok_text='./text_tokenizer_4m_wordpiece_30k.json',
).to(device)
def img_from_path(img_path: str):
rgb_transform = RGBTransform(imagenet_default_mean_and_std=True)
img_pil = rgb_transform.load(img_path)
img_pil = rgb_transform.preprocess(img_pil)
img_pil = center_crop(img_pil, (min(img_pil.size), min(img_pil.size))).resize((224,224))
img = rgb_transform.postprocess(img_pil).unsqueeze(0)
return img
@spaces.GPU
def infer(img_path, seed=0, randomize_seed=False, target_modalities=None, top_p=0.8, top_k=0.0):
if randomize_seed:
seed = None
img = img_from_path(img_path).to(device)
preds = sampler({'rgb@224': img}, seed=seed, target_modalities=target_modalities, top_p=top_p, top_k=top_k)
sampler.plot_modalities(preds, ncols_max=4, use_fixed_plotting_order=True, save_path='./output.png')
return './output.png'
examples = [
'examples/example_0.png', 'examples/example_1.png', 'examples/example_2.png',
'examples/example_3.png', 'examples/example_4.png', 'examples/example_5.png',
]
css="""
#col-container {
margin: 0 auto;
max-width: 1500px;
}
#col-input-container {
margin: 0 auto;
max-width: 400px;
}
#run-button {
margin: 0 auto;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Base()) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# 4M: Massively Multimodal Masked Modeling
""")
with gr.Row():
with gr.Column(elem_id="col-input-container"):
gr.Markdown(f"""
*A framework for training any-to-any multimodal foundation models. Scalable. Open-sourced. Across tens of modalities and tasks.*
[`Website`](https://4m.epfl.ch) | [`GitHub`](https://github.com/apple/ml-4m) <br>[`4M Paper (NeurIPS'23)`](https://arxiv.org/abs/2312.06647) | [`4M-21 Paper (arXiv'24)`](https://arxiv.org/abs/2406.09406)
This demo predicts all modalities from a given RGB input, using [{FM_MODEL_ID}](https://huggingface.co/{FM_MODEL_ID}), running on *{power_device}*.
For more generative examples, and to enable human pose visualizations, please see our [GitHub repo](https://github.com/apple/ml-4m).
(Disclaimer: The demo is a work in progress. We will switch it to using 4M-21 XL when running on GPU. Until then, this space runs on CPU and takes several minutes for inference.)
""")
img_path = gr.Image(label='RGB input image', type='filepath')
run_button = gr.Button(f"Predict with {MODEL_NAME}", scale=0, elem_id="run-button")
with gr.Accordion("Advanced Settings", open=False):
target_modalities = gr.CheckboxGroup(
choices=[
('CLIP-B/16', 'tok_clip@224'), ('DINOv2-B/14', 'tok_dinov2@224'), ('ImageBind-H/14', 'tok_imagebind@224'),
('Depth', 'tok_depth@224'), ('Surface normals', 'tok_normal@224'), ('Semantic segmentation', 'tok_semseg@224'),
('Canny edges', 'tok_canny_edge@224'), ('SAM edges', 'tok_sam_edge@224'), ('Caption', 'caption'),
('Bounding boxes', 'det'), ('SAM instances', 'sam_instance'), ('Color palette', 'color_palette'),
('Metadata', 'metadata'),
],
value=[
'tok_clip@224', 'tok_dinov2@224', 'tok_imagebind@224',
'tok_depth@224', 'tok_normal@224', 'tok_semseg@224',
'tok_canny_edge@224', 'tok_sam_edge@224', 'caption',
'det', 'sam_instance', 'color_palette', 'metadata'
],
label="Target modalities",
info='Choose which modalities are predicted (in this order).'
)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
top_p = gr.Slider(label="Top-p", minimum=0.0, maximum=1.0, step=0.01, value=0.8)
top_k = gr.Slider(label="Top-k", minimum=0.0, maximum=1.0, step=0.01, value=0.0)
result = gr.Image(label="Predictions", show_label=False)
gr.Examples(
examples = examples,
fn = infer,
inputs = [img_path],
outputs = [result],
cache_examples='lazy',
)
run_button.click(
fn = infer,
inputs = [img_path, seed, randomize_seed, target_modalities, top_p, top_k],
outputs = [result]
)
demo.queue(max_size=10).launch()