File size: 73,909 Bytes
0aaa1f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import os
from contextlib import nullcontext
from pathlib import Path
from typing import Callable, Dict, List, Optional, Union

import safetensors
import torch
from huggingface_hub import model_info
from huggingface_hub.constants import HF_HUB_OFFLINE
from huggingface_hub.utils import validate_hf_hub_args
from packaging import version
from torch import nn

from .. import __version__
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
from ..utils import (
    USE_PEFT_BACKEND,
    _get_model_file,
    convert_state_dict_to_diffusers,
    convert_state_dict_to_peft,
    convert_unet_state_dict_to_peft,
    delete_adapter_layers,
    deprecate,
    get_adapter_name,
    get_peft_kwargs,
    is_accelerate_available,
    is_transformers_available,
    logging,
    recurse_remove_peft_layers,
    scale_lora_layers,
    set_adapter_layers,
    set_weights_and_activate_adapters,
)
from .lora_conversion_utils import _convert_kohya_lora_to_diffusers, _maybe_map_sgm_blocks_to_diffusers


if is_transformers_available():
    from transformers import PreTrainedModel

    from ..models.lora import PatchedLoraProjection, text_encoder_attn_modules, text_encoder_mlp_modules

if is_accelerate_available():
    from accelerate import init_empty_weights
    from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module

logger = logging.get_logger(__name__)

TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
TRANSFORMER_NAME = "transformer"

LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"

LORA_DEPRECATION_MESSAGE = "You are using an old version of LoRA backend. This will be deprecated in the next releases in favor of PEFT make sure to install the latest PEFT and transformers packages in the future."


class LoraLoaderMixin:
    r"""
    Load LoRA layers into [`UNet2DConditionModel`] and
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
    """

    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME
    transformer_name = TRANSFORMER_NAME
    num_fused_loras = 0

    def load_lora_weights(
        self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.

        See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
        `self.unet`.

        See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
        into `self.text_encoder`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
            kwargs (`dict`, *optional*):
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
        """
        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
        state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)

        self.load_lora_into_unet(
            state_dict,
            network_alphas=network_alphas,
            unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet,
            low_cpu_mem_usage=low_cpu_mem_usage,
            adapter_name=adapter_name,
            _pipeline=self,
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=getattr(self, self.text_encoder_name)
            if not hasattr(self, "text_encoder")
            else self.text_encoder,
            lora_scale=self.lora_scale,
            low_cpu_mem_usage=low_cpu_mem_usage,
            adapter_name=adapter_name,
            _pipeline=self,
        )

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.

        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        unet_config = kwargs.pop("unet_config", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
                    # Here we're relaxing the loading check to enable more Inference API
                    # friendliness where sometimes, it's not at all possible to automatically
                    # determine `weight_name`.
                    if weight_name is None:
                        weight_name = cls._best_guess_weight_name(
                            pretrained_model_name_or_path_or_dict,
                            file_extension=".safetensors",
                            local_files_only=local_files_only,
                        )
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        token=token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
                except (IOError, safetensors.SafetensorError) as e:
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
                    model_file = None
                    pass

            if model_file is None:
                if weight_name is None:
                    weight_name = cls._best_guess_weight_name(
                        pretrained_model_name_or_path_or_dict, file_extension=".bin", local_files_only=local_files_only
                    )
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        network_alphas = None
        # TODO: replace it with a method from `state_dict_utils`
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
                state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
            state_dict, network_alphas = _convert_kohya_lora_to_diffusers(state_dict)

        return state_dict, network_alphas

    @classmethod
    def _best_guess_weight_name(
        cls, pretrained_model_name_or_path_or_dict, file_extension=".safetensors", local_files_only=False
    ):
        if local_files_only or HF_HUB_OFFLINE:
            raise ValueError("When using the offline mode, you must specify a `weight_name`.")

        targeted_files = []

        if os.path.isfile(pretrained_model_name_or_path_or_dict):
            return
        elif os.path.isdir(pretrained_model_name_or_path_or_dict):
            targeted_files = [
                f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension)
            ]
        else:
            files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings
            targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)]
        if len(targeted_files) == 0:
            return

        # "scheduler" does not correspond to a LoRA checkpoint.
        # "optimizer" does not correspond to a LoRA checkpoint
        # only top-level checkpoints are considered and not the other ones, hence "checkpoint".
        unallowed_substrings = {"scheduler", "optimizer", "checkpoint"}
        targeted_files = list(
            filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files)
        )

        if any(f.endswith(LORA_WEIGHT_NAME) for f in targeted_files):
            targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME), targeted_files))
        elif any(f.endswith(LORA_WEIGHT_NAME_SAFE) for f in targeted_files):
            targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME_SAFE), targeted_files))

        if len(targeted_files) > 1:
            raise ValueError(
                f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one  `.safetensors` or `.bin` file in  {pretrained_model_name_or_path_or_dict}."
            )
        weight_name = targeted_files[0]
        return weight_name

    @classmethod
    def _optionally_disable_offloading(cls, _pipeline):
        """
        Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.

        Args:
            _pipeline (`DiffusionPipeline`):
                The pipeline to disable offloading for.

        Returns:
            tuple:
                A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
        """
        is_model_cpu_offload = False
        is_sequential_cpu_offload = False

        if _pipeline is not None:
            for _, component in _pipeline.components.items():
                if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
                    if not is_model_cpu_offload:
                        is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload)
                    if not is_sequential_cpu_offload:
                        is_sequential_cpu_offload = isinstance(component._hf_hook, AlignDevicesHook)

                    logger.info(
                        "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
                    )
                    remove_hook_from_module(component, recurse=is_sequential_cpu_offload)

        return (is_model_cpu_offload, is_sequential_cpu_offload)

    @classmethod
    def load_lora_into_unet(
        cls, state_dict, network_alphas, unet, low_cpu_mem_usage=None, adapter_name=None, _pipeline=None
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `unet`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            network_alphas (`Dict[str, float]`):
                See `LoRALinearLayer` for more details.
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
        """
        low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())

        if all(key.startswith("unet.unet") for key in keys):
            deprecation_message = "Keys starting with 'unet.unet' are deprecated."
            deprecate("unet.unet keys", "0.27", deprecation_message)

        if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys):
            # Load the layers corresponding to UNet.
            logger.info(f"Loading {cls.unet_name}.")

            unet_keys = [k for k in keys if k.startswith(cls.unet_name)]
            state_dict = {k.replace(f"{cls.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

            if network_alphas is not None:
                alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.unet_name)]
                network_alphas = {
                    k.replace(f"{cls.unet_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
                }

        else:
            # Otherwise, we're dealing with the old format. This means the `state_dict` should only
            # contain the module names of the `unet` as its keys WITHOUT any prefix.
            if not USE_PEFT_BACKEND:
                warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet.{module_name}': params for module_name, params in old_state_dict.items()}`."
                logger.warn(warn_message)

        if USE_PEFT_BACKEND and len(state_dict.keys()) > 0:
            from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict

            if adapter_name in getattr(unet, "peft_config", {}):
                raise ValueError(
                    f"Adapter name {adapter_name} already in use in the Unet - please select a new adapter name."
                )

            state_dict = convert_unet_state_dict_to_peft(state_dict)

            if network_alphas is not None:
                # The alphas state dict have the same structure as Unet, thus we convert it to peft format using
                # `convert_unet_state_dict_to_peft` method.
                network_alphas = convert_unet_state_dict_to_peft(network_alphas)

            rank = {}
            for key, val in state_dict.items():
                if "lora_B" in key:
                    rank[key] = val.shape[1]

            lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict, is_unet=True)
            lora_config = LoraConfig(**lora_config_kwargs)

            # adapter_name
            if adapter_name is None:
                adapter_name = get_adapter_name(unet)

            # In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
            # otherwise loading LoRA weights will lead to an error
            is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)

            inject_adapter_in_model(lora_config, unet, adapter_name=adapter_name)
            incompatible_keys = set_peft_model_state_dict(unet, state_dict, adapter_name)

            if incompatible_keys is not None:
                # check only for unexpected keys
                unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
                if unexpected_keys:
                    logger.warning(
                        f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
                        f" {unexpected_keys}. "
                    )

            # Offload back.
            if is_model_cpu_offload:
                _pipeline.enable_model_cpu_offload()
            elif is_sequential_cpu_offload:
                _pipeline.enable_sequential_cpu_offload()
            # Unsafe code />

        unet.load_attn_procs(
            state_dict, network_alphas=network_alphas, low_cpu_mem_usage=low_cpu_mem_usage, _pipeline=_pipeline
        )

    @classmethod
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        low_cpu_mem_usage=None,
        adapter_name=None,
        _pipeline=None,
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
                See `LoRALinearLayer` for more details.
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
        """
        low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT

        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
        prefix = cls.text_encoder_name if prefix is None else prefix

        # Safe prefix to check with.
        if any(cls.text_encoder_name in key for key in keys):
            # Load the layers corresponding to text encoder and make necessary adjustments.
            text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix]
            text_encoder_lora_state_dict = {
                k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
            }

            if len(text_encoder_lora_state_dict) > 0:
                logger.info(f"Loading {prefix}.")
                rank = {}
                text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict)

                if USE_PEFT_BACKEND:
                    # convert state dict
                    text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict)

                    for name, _ in text_encoder_attn_modules(text_encoder):
                        rank_key = f"{name}.out_proj.lora_B.weight"
                        rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1]

                    patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
                    if patch_mlp:
                        for name, _ in text_encoder_mlp_modules(text_encoder):
                            rank_key_fc1 = f"{name}.fc1.lora_B.weight"
                            rank_key_fc2 = f"{name}.fc2.lora_B.weight"

                            rank[rank_key_fc1] = text_encoder_lora_state_dict[rank_key_fc1].shape[1]
                            rank[rank_key_fc2] = text_encoder_lora_state_dict[rank_key_fc2].shape[1]
                else:
                    for name, _ in text_encoder_attn_modules(text_encoder):
                        rank_key = f"{name}.out_proj.lora_linear_layer.up.weight"
                        rank.update({rank_key: text_encoder_lora_state_dict[rank_key].shape[1]})

                    patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
                    if patch_mlp:
                        for name, _ in text_encoder_mlp_modules(text_encoder):
                            rank_key_fc1 = f"{name}.fc1.lora_linear_layer.up.weight"
                            rank_key_fc2 = f"{name}.fc2.lora_linear_layer.up.weight"
                            rank[rank_key_fc1] = text_encoder_lora_state_dict[rank_key_fc1].shape[1]
                            rank[rank_key_fc2] = text_encoder_lora_state_dict[rank_key_fc2].shape[1]

                if network_alphas is not None:
                    alpha_keys = [
                        k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix
                    ]
                    network_alphas = {
                        k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
                    }

                if USE_PEFT_BACKEND:
                    from peft import LoraConfig

                    lora_config_kwargs = get_peft_kwargs(
                        rank, network_alphas, text_encoder_lora_state_dict, is_unet=False
                    )
                    lora_config = LoraConfig(**lora_config_kwargs)

                    # adapter_name
                    if adapter_name is None:
                        adapter_name = get_adapter_name(text_encoder)

                    is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)

                    # inject LoRA layers and load the state dict
                    # in transformers we automatically check whether the adapter name is already in use or not
                    text_encoder.load_adapter(
                        adapter_name=adapter_name,
                        adapter_state_dict=text_encoder_lora_state_dict,
                        peft_config=lora_config,
                    )

                    # scale LoRA layers with `lora_scale`
                    scale_lora_layers(text_encoder, weight=lora_scale)
                else:
                    cls._modify_text_encoder(
                        text_encoder,
                        lora_scale,
                        network_alphas,
                        rank=rank,
                        patch_mlp=patch_mlp,
                        low_cpu_mem_usage=low_cpu_mem_usage,
                    )

                    is_pipeline_offloaded = _pipeline is not None and any(
                        isinstance(c, torch.nn.Module) and hasattr(c, "_hf_hook")
                        for c in _pipeline.components.values()
                    )
                    if is_pipeline_offloaded and low_cpu_mem_usage:
                        low_cpu_mem_usage = True
                        logger.info(
                            f"Pipeline {_pipeline.__class__} is offloaded. Therefore low cpu mem usage loading is forced."
                        )

                    if low_cpu_mem_usage:
                        device = next(iter(text_encoder_lora_state_dict.values())).device
                        dtype = next(iter(text_encoder_lora_state_dict.values())).dtype
                        unexpected_keys = load_model_dict_into_meta(
                            text_encoder, text_encoder_lora_state_dict, device=device, dtype=dtype
                        )
                    else:
                        load_state_dict_results = text_encoder.load_state_dict(
                            text_encoder_lora_state_dict, strict=False
                        )
                        unexpected_keys = load_state_dict_results.unexpected_keys

                    if len(unexpected_keys) != 0:
                        raise ValueError(
                            f"failed to load text encoder state dict, unexpected keys: {load_state_dict_results.unexpected_keys}"
                        )

                    # <Unsafe code
                    # We can be sure that the following works as all we do is change the dtype and device of the text encoder
                    # Now we remove any existing hooks to
                    is_model_cpu_offload = False
                    is_sequential_cpu_offload = False
                    if _pipeline is not None:
                        for _, component in _pipeline.components.items():
                            if isinstance(component, torch.nn.Module):
                                if hasattr(component, "_hf_hook"):
                                    is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
                                    is_sequential_cpu_offload = isinstance(
                                        getattr(component, "_hf_hook"), AlignDevicesHook
                                    )
                                    logger.info(
                                        "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
                                    )
                                    remove_hook_from_module(component, recurse=is_sequential_cpu_offload)

                text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype)

                # Offload back.
                if is_model_cpu_offload:
                    _pipeline.enable_model_cpu_offload()
                elif is_sequential_cpu_offload:
                    _pipeline.enable_sequential_cpu_offload()
                # Unsafe code />

    @classmethod
    def load_lora_into_transformer(
        cls, state_dict, network_alphas, transformer, low_cpu_mem_usage=None, adapter_name=None, _pipeline=None
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            network_alphas (`Dict[str, float]`):
                See `LoRALinearLayer` for more details.
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
        """
        low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT

        keys = list(state_dict.keys())

        transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)]
        state_dict = {
            k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys
        }

        if network_alphas is not None:
            alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.transformer_name)]
            network_alphas = {
                k.replace(f"{cls.transformer_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
            }

        if len(state_dict.keys()) > 0:
            from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict

            if adapter_name in getattr(transformer, "peft_config", {}):
                raise ValueError(
                    f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name."
                )

            rank = {}
            for key, val in state_dict.items():
                if "lora_B" in key:
                    rank[key] = val.shape[1]

            lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict)
            lora_config = LoraConfig(**lora_config_kwargs)

            # adapter_name
            if adapter_name is None:
                adapter_name = get_adapter_name(transformer)

            # In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
            # otherwise loading LoRA weights will lead to an error
            is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)

            inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name)
            incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name)

            if incompatible_keys is not None:
                # check only for unexpected keys
                unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
                if unexpected_keys:
                    logger.warning(
                        f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
                        f" {unexpected_keys}. "
                    )

            # Offload back.
            if is_model_cpu_offload:
                _pipeline.enable_model_cpu_offload()
            elif is_sequential_cpu_offload:
                _pipeline.enable_sequential_cpu_offload()
            # Unsafe code />

    @property
    def lora_scale(self) -> float:
        # property function that returns the lora scale which can be set at run time by the pipeline.
        # if _lora_scale has not been set, return 1
        return self._lora_scale if hasattr(self, "_lora_scale") else 1.0

    def _remove_text_encoder_monkey_patch(self):
        if USE_PEFT_BACKEND:
            remove_method = recurse_remove_peft_layers
        else:
            remove_method = self._remove_text_encoder_monkey_patch_classmethod

        if hasattr(self, "text_encoder"):
            remove_method(self.text_encoder)

            # In case text encoder have no Lora attached
            if USE_PEFT_BACKEND and getattr(self.text_encoder, "peft_config", None) is not None:
                del self.text_encoder.peft_config
                self.text_encoder._hf_peft_config_loaded = None
        if hasattr(self, "text_encoder_2"):
            remove_method(self.text_encoder_2)
            if USE_PEFT_BACKEND:
                del self.text_encoder_2.peft_config
                self.text_encoder_2._hf_peft_config_loaded = None

    @classmethod
    def _remove_text_encoder_monkey_patch_classmethod(cls, text_encoder):
        deprecate("_remove_text_encoder_monkey_patch_classmethod", "0.27", LORA_DEPRECATION_MESSAGE)

        for _, attn_module in text_encoder_attn_modules(text_encoder):
            if isinstance(attn_module.q_proj, PatchedLoraProjection):
                attn_module.q_proj.lora_linear_layer = None
                attn_module.k_proj.lora_linear_layer = None
                attn_module.v_proj.lora_linear_layer = None
                attn_module.out_proj.lora_linear_layer = None

        for _, mlp_module in text_encoder_mlp_modules(text_encoder):
            if isinstance(mlp_module.fc1, PatchedLoraProjection):
                mlp_module.fc1.lora_linear_layer = None
                mlp_module.fc2.lora_linear_layer = None

    @classmethod
    def _modify_text_encoder(
        cls,
        text_encoder,
        lora_scale=1,
        network_alphas=None,
        rank: Union[Dict[str, int], int] = 4,
        dtype=None,
        patch_mlp=False,
        low_cpu_mem_usage=False,
    ):
        r"""
        Monkey-patches the forward passes of attention modules of the text encoder.
        """
        deprecate("_modify_text_encoder", "0.27", LORA_DEPRECATION_MESSAGE)

        def create_patched_linear_lora(model, network_alpha, rank, dtype, lora_parameters):
            linear_layer = model.regular_linear_layer if isinstance(model, PatchedLoraProjection) else model
            ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
            with ctx():
                model = PatchedLoraProjection(linear_layer, lora_scale, network_alpha, rank, dtype=dtype)

            lora_parameters.extend(model.lora_linear_layer.parameters())
            return model

        # First, remove any monkey-patch that might have been applied before
        cls._remove_text_encoder_monkey_patch_classmethod(text_encoder)

        lora_parameters = []
        network_alphas = {} if network_alphas is None else network_alphas
        is_network_alphas_populated = len(network_alphas) > 0

        for name, attn_module in text_encoder_attn_modules(text_encoder):
            query_alpha = network_alphas.pop(name + ".to_q_lora.down.weight.alpha", None)
            key_alpha = network_alphas.pop(name + ".to_k_lora.down.weight.alpha", None)
            value_alpha = network_alphas.pop(name + ".to_v_lora.down.weight.alpha", None)
            out_alpha = network_alphas.pop(name + ".to_out_lora.down.weight.alpha", None)

            if isinstance(rank, dict):
                current_rank = rank.pop(f"{name}.out_proj.lora_linear_layer.up.weight")
            else:
                current_rank = rank

            attn_module.q_proj = create_patched_linear_lora(
                attn_module.q_proj, query_alpha, current_rank, dtype, lora_parameters
            )
            attn_module.k_proj = create_patched_linear_lora(
                attn_module.k_proj, key_alpha, current_rank, dtype, lora_parameters
            )
            attn_module.v_proj = create_patched_linear_lora(
                attn_module.v_proj, value_alpha, current_rank, dtype, lora_parameters
            )
            attn_module.out_proj = create_patched_linear_lora(
                attn_module.out_proj, out_alpha, current_rank, dtype, lora_parameters
            )

        if patch_mlp:
            for name, mlp_module in text_encoder_mlp_modules(text_encoder):
                fc1_alpha = network_alphas.pop(name + ".fc1.lora_linear_layer.down.weight.alpha", None)
                fc2_alpha = network_alphas.pop(name + ".fc2.lora_linear_layer.down.weight.alpha", None)

                current_rank_fc1 = rank.pop(f"{name}.fc1.lora_linear_layer.up.weight")
                current_rank_fc2 = rank.pop(f"{name}.fc2.lora_linear_layer.up.weight")

                mlp_module.fc1 = create_patched_linear_lora(
                    mlp_module.fc1, fc1_alpha, current_rank_fc1, dtype, lora_parameters
                )
                mlp_module.fc2 = create_patched_linear_lora(
                    mlp_module.fc2, fc2_alpha, current_rank_fc2, dtype, lora_parameters
                )

        if is_network_alphas_populated and len(network_alphas) > 0:
            raise ValueError(
                f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
            )

        return lora_parameters

    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        transformer_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
        """
        state_dict = {}

        def pack_weights(layers, prefix):
            layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
            layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
            return layers_state_dict

        if not (unet_lora_layers or text_encoder_lora_layers or transformer_lora_layers):
            raise ValueError(
                "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers`, or `transformer_lora_layers`."
            )

        if unet_lora_layers:
            state_dict.update(pack_weights(unet_lora_layers, cls.unet_name))

        if text_encoder_lora_layers:
            state_dict.update(pack_weights(text_encoder_lora_layers, cls.text_encoder_name))

        if transformer_lora_layers:
            state_dict.update(pack_weights(transformer_lora_layers, "transformer"))

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    @staticmethod
    def write_lora_layers(
        state_dict: Dict[str, torch.Tensor],
        save_directory: str,
        is_main_process: bool,
        weight_name: str,
        save_function: Callable,
        safe_serialization: bool,
    ):
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save

        os.makedirs(save_directory, exist_ok=True)

        if weight_name is None:
            if safe_serialization:
                weight_name = LORA_WEIGHT_NAME_SAFE
            else:
                weight_name = LORA_WEIGHT_NAME

        save_path = Path(save_directory, weight_name).as_posix()
        save_function(state_dict, save_path)
        logger.info(f"Model weights saved in {save_path}")

    def unload_lora_weights(self):
        """
        Unloads the LoRA parameters.

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
        >>> pipeline.unload_lora_weights()
        >>> ...
        ```
        """
        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet

        if not USE_PEFT_BACKEND:
            if version.parse(__version__) > version.parse("0.23"):
                logger.warning(
                    "You are using `unload_lora_weights` to disable and unload lora weights. If you want to iteratively enable and disable adapter weights,"
                    "you can use `pipe.enable_lora()` or `pipe.disable_lora()`. After installing the latest version of PEFT."
                )

            for _, module in unet.named_modules():
                if hasattr(module, "set_lora_layer"):
                    module.set_lora_layer(None)
        else:
            recurse_remove_peft_layers(unet)
            if hasattr(unet, "peft_config"):
                del unet.peft_config

        # Safe to call the following regardless of LoRA.
        self._remove_text_encoder_monkey_patch()

    def fuse_lora(
        self,
        fuse_unet: bool = True,
        fuse_text_encoder: bool = True,
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            fuse_unet (`bool`, defaults to `True`): Whether to fuse the UNet LoRA parameters.
            fuse_text_encoder (`bool`, defaults to `True`):
                Whether to fuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        if fuse_unet or fuse_text_encoder:
            self.num_fused_loras += 1
            if self.num_fused_loras > 1:
                logger.warn(
                    "The current API is supported for operating with a single LoRA file. You are trying to load and fuse more than one LoRA which is not well-supported.",
                )

        if fuse_unet:
            unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
            unet.fuse_lora(lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names)

        if USE_PEFT_BACKEND:
            from peft.tuners.tuners_utils import BaseTunerLayer

            def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False, adapter_names=None):
                merge_kwargs = {"safe_merge": safe_fusing}

                for module in text_encoder.modules():
                    if isinstance(module, BaseTunerLayer):
                        if lora_scale != 1.0:
                            module.scale_layer(lora_scale)

                        # For BC with previous PEFT versions, we need to check the signature
                        # of the `merge` method to see if it supports the `adapter_names` argument.
                        supported_merge_kwargs = list(inspect.signature(module.merge).parameters)
                        if "adapter_names" in supported_merge_kwargs:
                            merge_kwargs["adapter_names"] = adapter_names
                        elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None:
                            raise ValueError(
                                "The `adapter_names` argument is not supported with your PEFT version. "
                                "Please upgrade to the latest version of PEFT. `pip install -U peft`"
                            )

                        module.merge(**merge_kwargs)

        else:
            deprecate("fuse_text_encoder_lora", "0.27", LORA_DEPRECATION_MESSAGE)

            def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False, **kwargs):
                if "adapter_names" in kwargs and kwargs["adapter_names"] is not None:
                    raise ValueError(
                        "The `adapter_names` argument is not supported in your environment. Please switch to PEFT "
                        "backend to use this argument by installing latest PEFT and transformers."
                        " `pip install -U peft transformers`"
                    )

                for _, attn_module in text_encoder_attn_modules(text_encoder):
                    if isinstance(attn_module.q_proj, PatchedLoraProjection):
                        attn_module.q_proj._fuse_lora(lora_scale, safe_fusing)
                        attn_module.k_proj._fuse_lora(lora_scale, safe_fusing)
                        attn_module.v_proj._fuse_lora(lora_scale, safe_fusing)
                        attn_module.out_proj._fuse_lora(lora_scale, safe_fusing)

                for _, mlp_module in text_encoder_mlp_modules(text_encoder):
                    if isinstance(mlp_module.fc1, PatchedLoraProjection):
                        mlp_module.fc1._fuse_lora(lora_scale, safe_fusing)
                        mlp_module.fc2._fuse_lora(lora_scale, safe_fusing)

        if fuse_text_encoder:
            if hasattr(self, "text_encoder"):
                fuse_text_encoder_lora(self.text_encoder, lora_scale, safe_fusing, adapter_names=adapter_names)
            if hasattr(self, "text_encoder_2"):
                fuse_text_encoder_lora(self.text_encoder_2, lora_scale, safe_fusing, adapter_names=adapter_names)

    def unfuse_lora(self, unfuse_unet: bool = True, unfuse_text_encoder: bool = True):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
            unfuse_text_encoder (`bool`, defaults to `True`):
                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
        """
        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
        if unfuse_unet:
            if not USE_PEFT_BACKEND:
                unet.unfuse_lora()
            else:
                from peft.tuners.tuners_utils import BaseTunerLayer

                for module in unet.modules():
                    if isinstance(module, BaseTunerLayer):
                        module.unmerge()

        if USE_PEFT_BACKEND:
            from peft.tuners.tuners_utils import BaseTunerLayer

            def unfuse_text_encoder_lora(text_encoder):
                for module in text_encoder.modules():
                    if isinstance(module, BaseTunerLayer):
                        module.unmerge()

        else:
            deprecate("unfuse_text_encoder_lora", "0.27", LORA_DEPRECATION_MESSAGE)

            def unfuse_text_encoder_lora(text_encoder):
                for _, attn_module in text_encoder_attn_modules(text_encoder):
                    if isinstance(attn_module.q_proj, PatchedLoraProjection):
                        attn_module.q_proj._unfuse_lora()
                        attn_module.k_proj._unfuse_lora()
                        attn_module.v_proj._unfuse_lora()
                        attn_module.out_proj._unfuse_lora()

                for _, mlp_module in text_encoder_mlp_modules(text_encoder):
                    if isinstance(mlp_module.fc1, PatchedLoraProjection):
                        mlp_module.fc1._unfuse_lora()
                        mlp_module.fc2._unfuse_lora()

        if unfuse_text_encoder:
            if hasattr(self, "text_encoder"):
                unfuse_text_encoder_lora(self.text_encoder)
            if hasattr(self, "text_encoder_2"):
                unfuse_text_encoder_lora(self.text_encoder_2)

        self.num_fused_loras -= 1

    def set_adapters_for_text_encoder(
        self,
        adapter_names: Union[List[str], str],
        text_encoder: Optional["PreTrainedModel"] = None,  # noqa: F821
        text_encoder_weights: List[float] = None,
    ):
        """
        Sets the adapter layers for the text encoder.

        Args:
            adapter_names (`List[str]` or `str`):
                The names of the adapters to use.
            text_encoder (`torch.nn.Module`, *optional*):
                The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder`
                attribute.
            text_encoder_weights (`List[float]`, *optional*):
                The weights to use for the text encoder. If `None`, the weights are set to `1.0` for all the adapters.
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        def process_weights(adapter_names, weights):
            if weights is None:
                weights = [1.0] * len(adapter_names)
            elif isinstance(weights, float):
                weights = [weights]

            if len(adapter_names) != len(weights):
                raise ValueError(
                    f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(weights)}"
                )
            return weights

        adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
        text_encoder_weights = process_weights(adapter_names, text_encoder_weights)
        text_encoder = text_encoder or getattr(self, "text_encoder", None)
        if text_encoder is None:
            raise ValueError(
                "The pipeline does not have a default `pipe.text_encoder` class. Please make sure to pass a `text_encoder` instead."
            )
        set_weights_and_activate_adapters(text_encoder, adapter_names, text_encoder_weights)

    def disable_lora_for_text_encoder(self, text_encoder: Optional["PreTrainedModel"] = None):
        """
        Disables the LoRA layers for the text encoder.

        Args:
            text_encoder (`torch.nn.Module`, *optional*):
                The text encoder module to disable the LoRA layers for. If `None`, it will try to get the
                `text_encoder` attribute.
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        text_encoder = text_encoder or getattr(self, "text_encoder", None)
        if text_encoder is None:
            raise ValueError("Text Encoder not found.")
        set_adapter_layers(text_encoder, enabled=False)

    def enable_lora_for_text_encoder(self, text_encoder: Optional["PreTrainedModel"] = None):
        """
        Enables the LoRA layers for the text encoder.

        Args:
            text_encoder (`torch.nn.Module`, *optional*):
                The text encoder module to enable the LoRA layers for. If `None`, it will try to get the `text_encoder`
                attribute.
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")
        text_encoder = text_encoder or getattr(self, "text_encoder", None)
        if text_encoder is None:
            raise ValueError("Text Encoder not found.")
        set_adapter_layers(self.text_encoder, enabled=True)

    def set_adapters(
        self,
        adapter_names: Union[List[str], str],
        adapter_weights: Optional[List[float]] = None,
    ):
        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
        # Handle the UNET
        unet.set_adapters(adapter_names, adapter_weights)

        # Handle the Text Encoder
        if hasattr(self, "text_encoder"):
            self.set_adapters_for_text_encoder(adapter_names, self.text_encoder, adapter_weights)
        if hasattr(self, "text_encoder_2"):
            self.set_adapters_for_text_encoder(adapter_names, self.text_encoder_2, adapter_weights)

    def disable_lora(self):
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        # Disable unet adapters
        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
        unet.disable_lora()

        # Disable text encoder adapters
        if hasattr(self, "text_encoder"):
            self.disable_lora_for_text_encoder(self.text_encoder)
        if hasattr(self, "text_encoder_2"):
            self.disable_lora_for_text_encoder(self.text_encoder_2)

    def enable_lora(self):
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        # Enable unet adapters
        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
        unet.enable_lora()

        # Enable text encoder adapters
        if hasattr(self, "text_encoder"):
            self.enable_lora_for_text_encoder(self.text_encoder)
        if hasattr(self, "text_encoder_2"):
            self.enable_lora_for_text_encoder(self.text_encoder_2)

    def delete_adapters(self, adapter_names: Union[List[str], str]):
        """
        Args:
        Deletes the LoRA layers of `adapter_name` for the unet and text-encoder(s).
            adapter_names (`Union[List[str], str]`):
                The names of the adapter to delete. Can be a single string or a list of strings
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        if isinstance(adapter_names, str):
            adapter_names = [adapter_names]

        # Delete unet adapters
        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
        unet.delete_adapters(adapter_names)

        for adapter_name in adapter_names:
            # Delete text encoder adapters
            if hasattr(self, "text_encoder"):
                delete_adapter_layers(self.text_encoder, adapter_name)
            if hasattr(self, "text_encoder_2"):
                delete_adapter_layers(self.text_encoder_2, adapter_name)

    def get_active_adapters(self) -> List[str]:
        """
        Gets the list of the current active adapters.

        Example:

        ```python
        from diffusers import DiffusionPipeline

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0",
        ).to("cuda")
        pipeline.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
        pipeline.get_active_adapters()
        ```
        """
        if not USE_PEFT_BACKEND:
            raise ValueError(
                "PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`"
            )

        from peft.tuners.tuners_utils import BaseTunerLayer

        active_adapters = []
        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
        for module in unet.modules():
            if isinstance(module, BaseTunerLayer):
                active_adapters = module.active_adapters
                break

        return active_adapters

    def get_list_adapters(self) -> Dict[str, List[str]]:
        """
        Gets the current list of all available adapters in the pipeline.
        """
        if not USE_PEFT_BACKEND:
            raise ValueError(
                "PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`"
            )

        set_adapters = {}

        if hasattr(self, "text_encoder") and hasattr(self.text_encoder, "peft_config"):
            set_adapters["text_encoder"] = list(self.text_encoder.peft_config.keys())

        if hasattr(self, "text_encoder_2") and hasattr(self.text_encoder_2, "peft_config"):
            set_adapters["text_encoder_2"] = list(self.text_encoder_2.peft_config.keys())

        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
        if hasattr(self, self.unet_name) and hasattr(unet, "peft_config"):
            set_adapters[self.unet_name] = list(self.unet.peft_config.keys())

        return set_adapters

    def set_lora_device(self, adapter_names: List[str], device: Union[torch.device, str, int]) -> None:
        """
        Moves the LoRAs listed in `adapter_names` to a target device. Useful for offloading the LoRA to the CPU in case
        you want to load multiple adapters and free some GPU memory.

        Args:
            adapter_names (`List[str]`):
                List of adapters to send device to.
            device (`Union[torch.device, str, int]`):
                Device to send the adapters to. Can be either a torch device, a str or an integer.
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        from peft.tuners.tuners_utils import BaseTunerLayer

        # Handle the UNET
        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
        for unet_module in unet.modules():
            if isinstance(unet_module, BaseTunerLayer):
                for adapter_name in adapter_names:
                    unet_module.lora_A[adapter_name].to(device)
                    unet_module.lora_B[adapter_name].to(device)

        # Handle the text encoder
        modules_to_process = []
        if hasattr(self, "text_encoder"):
            modules_to_process.append(self.text_encoder)

        if hasattr(self, "text_encoder_2"):
            modules_to_process.append(self.text_encoder_2)

        for text_encoder in modules_to_process:
            # loop over submodules
            for text_encoder_module in text_encoder.modules():
                if isinstance(text_encoder_module, BaseTunerLayer):
                    for adapter_name in adapter_names:
                        text_encoder_module.lora_A[adapter_name].to(device)
                        text_encoder_module.lora_B[adapter_name].to(device)


class StableDiffusionXLLoraLoaderMixin(LoraLoaderMixin):
    """This class overrides `LoraLoaderMixin` with LoRA loading/saving code that's specific to SDXL"""

    # Overrride to properly handle the loading and unloading of the additional text encoder.
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        **kwargs,
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.

        See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
        `self.unet`.

        See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
        into `self.text_encoder`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            kwargs (`dict`, *optional*):
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
        """
        # We could have accessed the unet config from `lora_state_dict()` too. We pass
        # it here explicitly to be able to tell that it's coming from an SDXL
        # pipeline.

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
        state_dict, network_alphas = self.lora_state_dict(
            pretrained_model_name_or_path_or_dict,
            unet_config=self.unet.config,
            **kwargs,
        )
        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_unet(
            state_dict, network_alphas=network_alphas, unet=self.unet, adapter_name=adapter_name, _pipeline=self
        )
        text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
        if len(text_encoder_state_dict) > 0:
            self.load_lora_into_text_encoder(
                text_encoder_state_dict,
                network_alphas=network_alphas,
                text_encoder=self.text_encoder,
                prefix="text_encoder",
                lora_scale=self.lora_scale,
                adapter_name=adapter_name,
                _pipeline=self,
            )

        text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
        if len(text_encoder_2_state_dict) > 0:
            self.load_lora_into_text_encoder(
                text_encoder_2_state_dict,
                network_alphas=network_alphas,
                text_encoder=self.text_encoder_2,
                prefix="text_encoder_2",
                lora_scale=self.lora_scale,
                adapter_name=adapter_name,
                _pipeline=self,
            )

    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
        """
        state_dict = {}

        def pack_weights(layers, prefix):
            layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
            layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
            return layers_state_dict

        if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
            raise ValueError(
                "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
            )

        if unet_lora_layers:
            state_dict.update(pack_weights(unet_lora_layers, "unet"))

        if text_encoder_lora_layers and text_encoder_2_lora_layers:
            state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
            state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))

        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def _remove_text_encoder_monkey_patch(self):
        if USE_PEFT_BACKEND:
            recurse_remove_peft_layers(self.text_encoder)
            # TODO: @younesbelkada handle this in transformers side
            if getattr(self.text_encoder, "peft_config", None) is not None:
                del self.text_encoder.peft_config
                self.text_encoder._hf_peft_config_loaded = None

            recurse_remove_peft_layers(self.text_encoder_2)
            if getattr(self.text_encoder_2, "peft_config", None) is not None:
                del self.text_encoder_2.peft_config
                self.text_encoder_2._hf_peft_config_loaded = None
        else:
            self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
            self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)