File size: 49,236 Bytes
0aaa1f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
# Copyright 2023 CVSSP, ByteDance and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import Any, Callable, Dict, List, Optional, Union

import numpy as np
import torch
from transformers import (
    ClapFeatureExtractor,
    ClapModel,
    GPT2Model,
    RobertaTokenizer,
    RobertaTokenizerFast,
    SpeechT5HifiGan,
    T5EncoderModel,
    T5Tokenizer,
    T5TokenizerFast,
)

from ...models import AutoencoderKL
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
    is_accelerate_available,
    is_accelerate_version,
    is_librosa_available,
    logging,
    replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .modeling_audioldm2 import AudioLDM2ProjectionModel, AudioLDM2UNet2DConditionModel


if is_librosa_available():
    import librosa

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import scipy
        >>> import torch
        >>> from diffusers import AudioLDM2Pipeline

        >>> repo_id = "cvssp/audioldm2"
        >>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")

        >>> # define the prompts
        >>> prompt = "The sound of a hammer hitting a wooden surface."
        >>> negative_prompt = "Low quality."

        >>> # set the seed for generator
        >>> generator = torch.Generator("cuda").manual_seed(0)

        >>> # run the generation
        >>> audio = pipe(
        ...     prompt,
        ...     negative_prompt=negative_prompt,
        ...     num_inference_steps=200,
        ...     audio_length_in_s=10.0,
        ...     num_waveforms_per_prompt=3,
        ...     generator=generator,
        ... ).audios

        >>> # save the best audio sample (index 0) as a .wav file
        >>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio[0])
        ```
"""


def prepare_inputs_for_generation(
    inputs_embeds,
    attention_mask=None,
    past_key_values=None,
    **kwargs,
):
    if past_key_values is not None:
        # only last token for inputs_embeds if past is defined in kwargs
        inputs_embeds = inputs_embeds[:, -1:]

    return {
        "inputs_embeds": inputs_embeds,
        "attention_mask": attention_mask,
        "past_key_values": past_key_values,
        "use_cache": kwargs.get("use_cache"),
    }


class AudioLDM2Pipeline(DiffusionPipeline):
    r"""
    Pipeline for text-to-audio generation using AudioLDM2.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.ClapModel`]):
            First frozen text-encoder. AudioLDM2 uses the joint audio-text embedding model
            [CLAP](https://huggingface.co/docs/transformers/model_doc/clap#transformers.CLAPTextModelWithProjection),
            specifically the [laion/clap-htsat-unfused](https://huggingface.co/laion/clap-htsat-unfused) variant. The
            text branch is used to encode the text prompt to a prompt embedding. The full audio-text model is used to
            rank generated waveforms against the text prompt by computing similarity scores.
        text_encoder_2 ([`~transformers.T5EncoderModel`]):
            Second frozen text-encoder. AudioLDM2 uses the encoder of
            [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
            [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) variant.
        projection_model ([`AudioLDM2ProjectionModel`]):
            A trained model used to linearly project the hidden-states from the first and second text encoder models
            and insert learned SOS and EOS token embeddings. The projected hidden-states from the two text encoders are
            concatenated to give the input to the language model.
        language_model ([`~transformers.GPT2Model`]):
            An auto-regressive language model used to generate a sequence of hidden-states conditioned on the projected
            outputs from the two text encoders.
        tokenizer ([`~transformers.RobertaTokenizer`]):
            Tokenizer to tokenize text for the first frozen text-encoder.
        tokenizer_2 ([`~transformers.T5Tokenizer`]):
            Tokenizer to tokenize text for the second frozen text-encoder.
        feature_extractor ([`~transformers.ClapFeatureExtractor`]):
            Feature extractor to pre-process generated audio waveforms to log-mel spectrograms for automatic scoring.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded audio latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        vocoder ([`~transformers.SpeechT5HifiGan`]):
            Vocoder of class `SpeechT5HifiGan` to convert the mel-spectrogram latents to the final audio waveform.
    """

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: ClapModel,
        text_encoder_2: T5EncoderModel,
        projection_model: AudioLDM2ProjectionModel,
        language_model: GPT2Model,
        tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast],
        tokenizer_2: Union[T5Tokenizer, T5TokenizerFast],
        feature_extractor: ClapFeatureExtractor,
        unet: AudioLDM2UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        vocoder: SpeechT5HifiGan,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            projection_model=projection_model,
            language_model=language_model,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            feature_extractor=feature_extractor,
            unet=unet,
            scheduler=scheduler,
            vocoder=vocoder,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    def enable_model_cpu_offload(self, gpu_id=0):
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
        method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
        `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

        device = torch.device(f"cuda:{gpu_id}")

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
            torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)

        model_sequence = [
            self.text_encoder.text_model,
            self.text_encoder.text_projection,
            self.text_encoder_2,
            self.projection_model,
            self.language_model,
            self.unet,
            self.vae,
            self.vocoder,
            self.text_encoder,
        ]

        hook = None
        for cpu_offloaded_model in model_sequence:
            _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)

        # We'll offload the last model manually.
        self.final_offload_hook = hook

    def generate_language_model(
        self,
        inputs_embeds: torch.Tensor = None,
        max_new_tokens: int = 8,
        **model_kwargs,
    ):
        """

        Generates a sequence of hidden-states from the language model, conditioned on the embedding inputs.

        Parameters:
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                The sequence used as a prompt for the generation.
            max_new_tokens (`int`):
                Number of new tokens to generate.
            model_kwargs (`Dict[str, Any]`, *optional*):
                Ad hoc parametrization of additional model-specific kwargs that will be forwarded to the `forward`
                function of the model.

        Return:
            `inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                The sequence of generated hidden-states.
        """
        max_new_tokens = max_new_tokens if max_new_tokens is not None else self.language_model.config.max_new_tokens
        for _ in range(max_new_tokens):
            # prepare model inputs
            model_inputs = prepare_inputs_for_generation(inputs_embeds, **model_kwargs)

            # forward pass to get next hidden states
            output = self.language_model(**model_inputs, return_dict=True)

            next_hidden_states = output.last_hidden_state

            # Update the model input
            inputs_embeds = torch.cat([inputs_embeds, next_hidden_states[:, -1:, :]], dim=1)

            # Update generated hidden states, model inputs, and length for next step
            model_kwargs = self.language_model._update_model_kwargs_for_generation(output, model_kwargs)

        return inputs_embeds[:, -max_new_tokens:, :]

    def encode_prompt(
        self,
        prompt,
        device,
        num_waveforms_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        generated_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_generated_prompt_embeds: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        negative_attention_mask: Optional[torch.LongTensor] = None,
        max_new_tokens: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device (`torch.device`):
                torch device
            num_waveforms_per_prompt (`int`):
                number of waveforms that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the audio generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-computed text embeddings from the Flan T5 model. Can be used to easily tweak text inputs, *e.g.*
                prompt weighting. If not provided, text embeddings will be computed from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-computed negative text embeddings from the Flan T5 model. Can be used to easily tweak text inputs,
                *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
                `negative_prompt` input argument.
            generated_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings from the GPT2 langauge model. Can be used to easily tweak text inputs,
                 *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input
                 argument.
            negative_generated_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings from the GPT2 language model. Can be used to easily tweak text
                inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
                `negative_prompt` input argument.
            attention_mask (`torch.LongTensor`, *optional*):
                Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will
                be computed from `prompt` input argument.
            negative_attention_mask (`torch.LongTensor`, *optional*):
                Pre-computed attention mask to be applied to the `negative_prompt_embeds`. If not provided, attention
                mask will be computed from `negative_prompt` input argument.
            max_new_tokens (`int`, *optional*, defaults to None):
                The number of new tokens to generate with the GPT2 language model.
        Returns:
            prompt_embeds (`torch.FloatTensor`):
                Text embeddings from the Flan T5 model.
            attention_mask (`torch.LongTensor`):
                Attention mask to be applied to the `prompt_embeds`.
            generated_prompt_embeds (`torch.FloatTensor`):
                Text embeddings generated from the GPT2 langauge model.

        Example:

        ```python
        >>> import scipy
        >>> import torch
        >>> from diffusers import AudioLDM2Pipeline

        >>> repo_id = "cvssp/audioldm2"
        >>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")

        >>> # Get text embedding vectors
        >>> prompt_embeds, attention_mask, generated_prompt_embeds = pipe.encode_prompt(
        ...     prompt="Techno music with a strong, upbeat tempo and high melodic riffs",
        ...     device="cuda",
        ...     do_classifier_free_guidance=True,
        ... )

        >>> # Pass text embeddings to pipeline for text-conditional audio generation
        >>> audio = pipe(
        ...     prompt_embeds=prompt_embeds,
        ...     attention_mask=attention_mask,
        ...     generated_prompt_embeds=generated_prompt_embeds,
        ...     num_inference_steps=200,
        ...     audio_length_in_s=10.0,
        ... ).audios[0]

        >>> # save generated audio sample
        >>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio)
        ```"""
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # Define tokenizers and text encoders
        tokenizers = [self.tokenizer, self.tokenizer_2]
        text_encoders = [self.text_encoder, self.text_encoder_2]

        if prompt_embeds is None:
            prompt_embeds_list = []
            attention_mask_list = []

            for tokenizer, text_encoder in zip(tokenizers, text_encoders):
                text_inputs = tokenizer(
                    prompt,
                    padding="max_length" if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast)) else True,
                    max_length=tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )
                text_input_ids = text_inputs.input_ids
                attention_mask = text_inputs.attention_mask
                untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

                if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                    text_input_ids, untruncated_ids
                ):
                    removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
                    logger.warning(
                        f"The following part of your input was truncated because {text_encoder.config.model_type} can "
                        f"only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}"
                    )

                text_input_ids = text_input_ids.to(device)
                attention_mask = attention_mask.to(device)

                if text_encoder.config.model_type == "clap":
                    prompt_embeds = text_encoder.get_text_features(
                        text_input_ids,
                        attention_mask=attention_mask,
                    )
                    # append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
                    prompt_embeds = prompt_embeds[:, None, :]
                    # make sure that we attend to this single hidden-state
                    attention_mask = attention_mask.new_ones((batch_size, 1))
                else:
                    prompt_embeds = text_encoder(
                        text_input_ids,
                        attention_mask=attention_mask,
                    )
                    prompt_embeds = prompt_embeds[0]

                prompt_embeds_list.append(prompt_embeds)
                attention_mask_list.append(attention_mask)

            projection_output = self.projection_model(
                hidden_states=prompt_embeds_list[0],
                hidden_states_1=prompt_embeds_list[1],
                attention_mask=attention_mask_list[0],
                attention_mask_1=attention_mask_list[1],
            )
            projected_prompt_embeds = projection_output.hidden_states
            projected_attention_mask = projection_output.attention_mask

            generated_prompt_embeds = self.generate_language_model(
                projected_prompt_embeds,
                attention_mask=projected_attention_mask,
                max_new_tokens=max_new_tokens,
            )

        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
        attention_mask = (
            attention_mask.to(device=device)
            if attention_mask is not None
            else torch.ones(prompt_embeds.shape[:2], dtype=torch.long, device=device)
        )
        generated_prompt_embeds = generated_prompt_embeds.to(dtype=self.language_model.dtype, device=device)

        bs_embed, seq_len, hidden_size = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len, hidden_size)

        # duplicate attention mask for each generation per prompt
        attention_mask = attention_mask.repeat(1, num_waveforms_per_prompt)
        attention_mask = attention_mask.view(bs_embed * num_waveforms_per_prompt, seq_len)

        bs_embed, seq_len, hidden_size = generated_prompt_embeds.shape
        # duplicate generated embeddings for each generation per prompt, using mps friendly method
        generated_prompt_embeds = generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
        generated_prompt_embeds = generated_prompt_embeds.view(
            bs_embed * num_waveforms_per_prompt, seq_len, hidden_size
        )

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            negative_prompt_embeds_list = []
            negative_attention_mask_list = []
            max_length = prompt_embeds.shape[1]
            for tokenizer, text_encoder in zip(tokenizers, text_encoders):
                uncond_input = tokenizer(
                    uncond_tokens,
                    padding="max_length",
                    max_length=tokenizer.model_max_length
                    if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
                    else max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                uncond_input_ids = uncond_input.input_ids.to(device)
                negative_attention_mask = uncond_input.attention_mask.to(device)

                if text_encoder.config.model_type == "clap":
                    negative_prompt_embeds = text_encoder.get_text_features(
                        uncond_input_ids,
                        attention_mask=negative_attention_mask,
                    )
                    # append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
                    negative_prompt_embeds = negative_prompt_embeds[:, None, :]
                    # make sure that we attend to this single hidden-state
                    negative_attention_mask = negative_attention_mask.new_ones((batch_size, 1))
                else:
                    negative_prompt_embeds = text_encoder(
                        uncond_input_ids,
                        attention_mask=negative_attention_mask,
                    )
                    negative_prompt_embeds = negative_prompt_embeds[0]

                negative_prompt_embeds_list.append(negative_prompt_embeds)
                negative_attention_mask_list.append(negative_attention_mask)

            projection_output = self.projection_model(
                hidden_states=negative_prompt_embeds_list[0],
                hidden_states_1=negative_prompt_embeds_list[1],
                attention_mask=negative_attention_mask_list[0],
                attention_mask_1=negative_attention_mask_list[1],
            )
            negative_projected_prompt_embeds = projection_output.hidden_states
            negative_projected_attention_mask = projection_output.attention_mask

            negative_generated_prompt_embeds = self.generate_language_model(
                negative_projected_prompt_embeds,
                attention_mask=negative_projected_attention_mask,
                max_new_tokens=max_new_tokens,
            )

        if do_classifier_free_guidance:
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
            negative_attention_mask = (
                negative_attention_mask.to(device=device)
                if negative_attention_mask is not None
                else torch.ones(negative_prompt_embeds.shape[:2], dtype=torch.long, device=device)
            )
            negative_generated_prompt_embeds = negative_generated_prompt_embeds.to(
                dtype=self.language_model.dtype, device=device
            )

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len, -1)

            # duplicate unconditional attention mask for each generation per prompt
            negative_attention_mask = negative_attention_mask.repeat(1, num_waveforms_per_prompt)
            negative_attention_mask = negative_attention_mask.view(batch_size * num_waveforms_per_prompt, seq_len)

            # duplicate unconditional generated embeddings for each generation per prompt
            seq_len = negative_generated_prompt_embeds.shape[1]
            negative_generated_prompt_embeds = negative_generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
            negative_generated_prompt_embeds = negative_generated_prompt_embeds.view(
                batch_size * num_waveforms_per_prompt, seq_len, -1
            )

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
            attention_mask = torch.cat([negative_attention_mask, attention_mask])
            generated_prompt_embeds = torch.cat([negative_generated_prompt_embeds, generated_prompt_embeds])

        return prompt_embeds, attention_mask, generated_prompt_embeds

    # Copied from diffusers.pipelines.audioldm.pipeline_audioldm.AudioLDMPipeline.mel_spectrogram_to_waveform
    def mel_spectrogram_to_waveform(self, mel_spectrogram):
        if mel_spectrogram.dim() == 4:
            mel_spectrogram = mel_spectrogram.squeeze(1)

        waveform = self.vocoder(mel_spectrogram)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        waveform = waveform.cpu().float()
        return waveform

    def score_waveforms(self, text, audio, num_waveforms_per_prompt, device, dtype):
        if not is_librosa_available():
            logger.info(
                "Automatic scoring of the generated audio waveforms against the input prompt text requires the "
                "`librosa` package to resample the generated waveforms. Returning the audios in the order they were "
                "generated. To enable automatic scoring, install `librosa` with: `pip install librosa`."
            )
            return audio
        inputs = self.tokenizer(text, return_tensors="pt", padding=True)
        resampled_audio = librosa.resample(
            audio.numpy(), orig_sr=self.vocoder.config.sampling_rate, target_sr=self.feature_extractor.sampling_rate
        )
        inputs["input_features"] = self.feature_extractor(
            list(resampled_audio), return_tensors="pt", sampling_rate=self.feature_extractor.sampling_rate
        ).input_features.type(dtype)
        inputs = inputs.to(device)

        # compute the audio-text similarity score using the CLAP model
        logits_per_text = self.text_encoder(**inputs).logits_per_text
        # sort by the highest matching generations per prompt
        indices = torch.argsort(logits_per_text, dim=1, descending=True)[:, :num_waveforms_per_prompt]
        audio = torch.index_select(audio, 0, indices.reshape(-1).cpu())
        return audio

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        audio_length_in_s,
        vocoder_upsample_factor,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        generated_prompt_embeds=None,
        negative_generated_prompt_embeds=None,
        attention_mask=None,
        negative_attention_mask=None,
    ):
        min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor
        if audio_length_in_s < min_audio_length_in_s:
            raise ValueError(
                f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but "
                f"is {audio_length_in_s}."
            )

        if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0:
            raise ValueError(
                f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the "
                f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of "
                f"{self.vae_scale_factor}."
            )

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and (prompt_embeds is None or generated_prompt_embeds is None):
            raise ValueError(
                "Provide either `prompt`, or `prompt_embeds` and `generated_prompt_embeds`. Cannot leave "
                "`prompt` undefined without specifying both `prompt_embeds` and `generated_prompt_embeds`."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )
        elif negative_prompt_embeds is not None and negative_generated_prompt_embeds is None:
            raise ValueError(
                "Cannot forward `negative_prompt_embeds` without `negative_generated_prompt_embeds`. Ensure that"
                "both arguments are specified"
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )
            if attention_mask is not None and attention_mask.shape != prompt_embeds.shape[:2]:
                raise ValueError(
                    "`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:"
                    f"`attention_mask: {attention_mask.shape} != `prompt_embeds` {prompt_embeds.shape}"
                )

        if generated_prompt_embeds is not None and negative_generated_prompt_embeds is not None:
            if generated_prompt_embeds.shape != negative_generated_prompt_embeds.shape:
                raise ValueError(
                    "`generated_prompt_embeds` and `negative_generated_prompt_embeds` must have the same shape when "
                    f"passed directly, but got: `generated_prompt_embeds` {generated_prompt_embeds.shape} != "
                    f"`negative_generated_prompt_embeds` {negative_generated_prompt_embeds.shape}."
                )
            if (
                negative_attention_mask is not None
                and negative_attention_mask.shape != negative_prompt_embeds.shape[:2]
            ):
                raise ValueError(
                    "`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:"
                    f"`attention_mask: {negative_attention_mask.shape} != `prompt_embeds` {negative_prompt_embeds.shape}"
                )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with width->self.vocoder.config.model_in_dim
    def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None):
        shape = (
            batch_size,
            num_channels_latents,
            height // self.vae_scale_factor,
            self.vocoder.config.model_in_dim // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        audio_length_in_s: Optional[float] = None,
        num_inference_steps: int = 200,
        guidance_scale: float = 3.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_waveforms_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        generated_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_generated_prompt_embeds: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        negative_attention_mask: Optional[torch.LongTensor] = None,
        max_new_tokens: Optional[int] = None,
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        output_type: Optional[str] = "np",
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide audio generation. If not defined, you need to pass `prompt_embeds`.
            audio_length_in_s (`int`, *optional*, defaults to 10.24):
                The length of the generated audio sample in seconds.
            num_inference_steps (`int`, *optional*, defaults to 200):
                The number of denoising steps. More denoising steps usually lead to a higher quality audio at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 3.5):
                A higher guidance scale value encourages the model to generate audio that is closely linked to the text
                `prompt` at the expense of lower sound quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in audio generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            num_waveforms_per_prompt (`int`, *optional*, defaults to 1):
                The number of waveforms to generate per prompt. If `num_waveforms_per_prompt > 1`, then automatic
                scoring is performed between the generated outputs and the text prompt. This scoring ranks the
                generated waveforms based on their cosine similarity with the text input in the joint text-audio
                embedding space.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for spectrogram
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            generated_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings from the GPT2 langauge model. Can be used to easily tweak text inputs,
                 *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input
                 argument.
            negative_generated_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings from the GPT2 language model. Can be used to easily tweak text
                inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
                `negative_prompt` input argument.
            attention_mask (`torch.LongTensor`, *optional*):
                Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will
                be computed from `prompt` input argument.
            negative_attention_mask (`torch.LongTensor`, *optional*):
                Pre-computed attention mask to be applied to the `negative_prompt_embeds`. If not provided, attention
                mask will be computed from `negative_prompt` input argument.
            max_new_tokens (`int`, *optional*, defaults to None):
                Number of new tokens to generate with the GPT2 language model. If not provided, number of tokens will
                be taken from the config of the model.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            output_type (`str`, *optional*, defaults to `"np"`):
                The output format of the generated audio. Choose between `"np"` to return a NumPy `np.ndarray` or
                `"pt"` to return a PyTorch `torch.Tensor` object. Set to `"latent"` to return the latent diffusion
                model (LDM) output.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated audio.
        """
        # 0. Convert audio input length from seconds to spectrogram height
        vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate

        if audio_length_in_s is None:
            audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor

        height = int(audio_length_in_s / vocoder_upsample_factor)

        original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate)
        if height % self.vae_scale_factor != 0:
            height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor
            logger.info(
                f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} "
                f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the "
                f"denoising process."
            )

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            audio_length_in_s,
            vocoder_upsample_factor,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            generated_prompt_embeds,
            negative_generated_prompt_embeds,
            attention_mask,
            negative_attention_mask,
        )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        prompt_embeds, attention_mask, generated_prompt_embeds = self.encode_prompt(
            prompt,
            device,
            num_waveforms_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            generated_prompt_embeds=generated_prompt_embeds,
            negative_generated_prompt_embeds=negative_generated_prompt_embeds,
            attention_mask=attention_mask,
            negative_attention_mask=negative_attention_mask,
            max_new_tokens=max_new_tokens,
        )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_waveforms_per_prompt,
            num_channels_latents,
            height,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=generated_prompt_embeds,
                    encoder_hidden_states_1=prompt_embeds,
                    encoder_attention_mask_1=attention_mask,
                    return_dict=False,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        self.maybe_free_model_hooks()

        # 8. Post-processing
        if not output_type == "latent":
            latents = 1 / self.vae.config.scaling_factor * latents
            mel_spectrogram = self.vae.decode(latents).sample
        else:
            return AudioPipelineOutput(audios=latents)

        audio = self.mel_spectrogram_to_waveform(mel_spectrogram)

        audio = audio[:, :original_waveform_length]

        # 9. Automatic scoring
        if num_waveforms_per_prompt > 1 and prompt is not None:
            audio = self.score_waveforms(
                text=prompt,
                audio=audio,
                num_waveforms_per_prompt=num_waveforms_per_prompt,
                device=device,
                dtype=prompt_embeds.dtype,
            )

        if output_type == "np":
            audio = audio.numpy()

        if not return_dict:
            return (audio,)

        return AudioPipelineOutput(audios=audio)