File size: 25,236 Bytes
0aaa1f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Import utilities: Utilities related to imports and our lazy inits.
"""
import importlib.util
import operator as op
import os
import sys
from collections import OrderedDict
from itertools import chain
from types import ModuleType
from typing import Any, Union

from huggingface_hub.utils import is_jinja_available  # noqa: F401
from packaging import version
from packaging.version import Version, parse

from . import logging


# The package importlib_metadata is in a different place, depending on the python version.
if sys.version_info < (3, 8):
    import importlib_metadata
else:
    import importlib.metadata as importlib_metadata


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})

USE_TF = os.environ.get("USE_TF", "AUTO").upper()
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper()
USE_SAFETENSORS = os.environ.get("USE_SAFETENSORS", "AUTO").upper()
DIFFUSERS_SLOW_IMPORT = os.environ.get("DIFFUSERS_SLOW_IMPORT", "FALSE").upper()
DIFFUSERS_SLOW_IMPORT = DIFFUSERS_SLOW_IMPORT in ENV_VARS_TRUE_VALUES

STR_OPERATION_TO_FUNC = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt}

_torch_version = "N/A"
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
    _torch_available = importlib.util.find_spec("torch") is not None
    if _torch_available:
        try:
            _torch_version = importlib_metadata.version("torch")
            logger.info(f"PyTorch version {_torch_version} available.")
        except importlib_metadata.PackageNotFoundError:
            _torch_available = False
else:
    logger.info("Disabling PyTorch because USE_TORCH is set")
    _torch_available = False

_torch_xla_available = importlib.util.find_spec("torch_xla") is not None
if _torch_xla_available:
    try:
        _torch_xla_version = importlib_metadata.version("torch_xla")
        logger.info(f"PyTorch XLA version {_torch_xla_version} available.")
    except ImportError:
        _torch_xla_available = False

_jax_version = "N/A"
_flax_version = "N/A"
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
    _flax_available = importlib.util.find_spec("jax") is not None and importlib.util.find_spec("flax") is not None
    if _flax_available:
        try:
            _jax_version = importlib_metadata.version("jax")
            _flax_version = importlib_metadata.version("flax")
            logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.")
        except importlib_metadata.PackageNotFoundError:
            _flax_available = False
else:
    _flax_available = False

if USE_SAFETENSORS in ENV_VARS_TRUE_AND_AUTO_VALUES:
    _safetensors_available = importlib.util.find_spec("safetensors") is not None
    if _safetensors_available:
        try:
            _safetensors_version = importlib_metadata.version("safetensors")
            logger.info(f"Safetensors version {_safetensors_version} available.")
        except importlib_metadata.PackageNotFoundError:
            _safetensors_available = False
else:
    logger.info("Disabling Safetensors because USE_TF is set")
    _safetensors_available = False

_transformers_available = importlib.util.find_spec("transformers") is not None
try:
    _transformers_version = importlib_metadata.version("transformers")
    logger.debug(f"Successfully imported transformers version {_transformers_version}")
except importlib_metadata.PackageNotFoundError:
    _transformers_available = False


_inflect_available = importlib.util.find_spec("inflect") is not None
try:
    _inflect_version = importlib_metadata.version("inflect")
    logger.debug(f"Successfully imported inflect version {_inflect_version}")
except importlib_metadata.PackageNotFoundError:
    _inflect_available = False


_unidecode_available = importlib.util.find_spec("unidecode") is not None
try:
    _unidecode_version = importlib_metadata.version("unidecode")
    logger.debug(f"Successfully imported unidecode version {_unidecode_version}")
except importlib_metadata.PackageNotFoundError:
    _unidecode_available = False


_onnxruntime_version = "N/A"
_onnx_available = importlib.util.find_spec("onnxruntime") is not None
if _onnx_available:
    candidates = (
        "onnxruntime",
        "onnxruntime-gpu",
        "ort_nightly_gpu",
        "onnxruntime-directml",
        "onnxruntime-openvino",
        "ort_nightly_directml",
        "onnxruntime-rocm",
        "onnxruntime-training",
    )
    _onnxruntime_version = None
    # For the metadata, we have to look for both onnxruntime and onnxruntime-gpu
    for pkg in candidates:
        try:
            _onnxruntime_version = importlib_metadata.version(pkg)
            break
        except importlib_metadata.PackageNotFoundError:
            pass
    _onnx_available = _onnxruntime_version is not None
    if _onnx_available:
        logger.debug(f"Successfully imported onnxruntime version {_onnxruntime_version}")

# (sayakpaul): importlib.util.find_spec("opencv-python") returns None even when it's installed.
# _opencv_available = importlib.util.find_spec("opencv-python") is not None
try:
    candidates = (
        "opencv-python",
        "opencv-contrib-python",
        "opencv-python-headless",
        "opencv-contrib-python-headless",
    )
    _opencv_version = None
    for pkg in candidates:
        try:
            _opencv_version = importlib_metadata.version(pkg)
            break
        except importlib_metadata.PackageNotFoundError:
            pass
    _opencv_available = _opencv_version is not None
    if _opencv_available:
        logger.debug(f"Successfully imported cv2 version {_opencv_version}")
except importlib_metadata.PackageNotFoundError:
    _opencv_available = False

_scipy_available = importlib.util.find_spec("scipy") is not None
try:
    _scipy_version = importlib_metadata.version("scipy")
    logger.debug(f"Successfully imported scipy version {_scipy_version}")
except importlib_metadata.PackageNotFoundError:
    _scipy_available = False

_librosa_available = importlib.util.find_spec("librosa") is not None
try:
    _librosa_version = importlib_metadata.version("librosa")
    logger.debug(f"Successfully imported librosa version {_librosa_version}")
except importlib_metadata.PackageNotFoundError:
    _librosa_available = False

_accelerate_available = importlib.util.find_spec("accelerate") is not None
try:
    _accelerate_version = importlib_metadata.version("accelerate")
    logger.debug(f"Successfully imported accelerate version {_accelerate_version}")
except importlib_metadata.PackageNotFoundError:
    _accelerate_available = False

_xformers_available = importlib.util.find_spec("xformers") is not None
try:
    _xformers_version = importlib_metadata.version("xformers")
    if _torch_available:
        _torch_version = importlib_metadata.version("torch")
        if version.Version(_torch_version) < version.Version("1.12"):
            raise ValueError("xformers is installed in your environment and requires PyTorch >= 1.12")

    logger.debug(f"Successfully imported xformers version {_xformers_version}")
except importlib_metadata.PackageNotFoundError:
    _xformers_available = False

_k_diffusion_available = importlib.util.find_spec("k_diffusion") is not None
try:
    _k_diffusion_version = importlib_metadata.version("k_diffusion")
    logger.debug(f"Successfully imported k-diffusion version {_k_diffusion_version}")
except importlib_metadata.PackageNotFoundError:
    _k_diffusion_available = False

_note_seq_available = importlib.util.find_spec("note_seq") is not None
try:
    _note_seq_version = importlib_metadata.version("note_seq")
    logger.debug(f"Successfully imported note-seq version {_note_seq_version}")
except importlib_metadata.PackageNotFoundError:
    _note_seq_available = False

_wandb_available = importlib.util.find_spec("wandb") is not None
try:
    _wandb_version = importlib_metadata.version("wandb")
    logger.debug(f"Successfully imported wandb version {_wandb_version }")
except importlib_metadata.PackageNotFoundError:
    _wandb_available = False


_tensorboard_available = importlib.util.find_spec("tensorboard")
try:
    _tensorboard_version = importlib_metadata.version("tensorboard")
    logger.debug(f"Successfully imported tensorboard version {_tensorboard_version}")
except importlib_metadata.PackageNotFoundError:
    _tensorboard_available = False


_compel_available = importlib.util.find_spec("compel")
try:
    _compel_version = importlib_metadata.version("compel")
    logger.debug(f"Successfully imported compel version {_compel_version}")
except importlib_metadata.PackageNotFoundError:
    _compel_available = False


_ftfy_available = importlib.util.find_spec("ftfy") is not None
try:
    _ftfy_version = importlib_metadata.version("ftfy")
    logger.debug(f"Successfully imported ftfy version {_ftfy_version}")
except importlib_metadata.PackageNotFoundError:
    _ftfy_available = False


_bs4_available = importlib.util.find_spec("bs4") is not None
try:
    # importlib metadata under different name
    _bs4_version = importlib_metadata.version("beautifulsoup4")
    logger.debug(f"Successfully imported ftfy version {_bs4_version}")
except importlib_metadata.PackageNotFoundError:
    _bs4_available = False

_torchsde_available = importlib.util.find_spec("torchsde") is not None
try:
    _torchsde_version = importlib_metadata.version("torchsde")
    logger.debug(f"Successfully imported torchsde version {_torchsde_version}")
except importlib_metadata.PackageNotFoundError:
    _torchsde_available = False

_invisible_watermark_available = importlib.util.find_spec("imwatermark") is not None
try:
    _invisible_watermark_version = importlib_metadata.version("invisible-watermark")
    logger.debug(f"Successfully imported invisible-watermark version {_invisible_watermark_version}")
except importlib_metadata.PackageNotFoundError:
    _invisible_watermark_available = False


_peft_available = importlib.util.find_spec("peft") is not None
try:
    _peft_version = importlib_metadata.version("peft")
    logger.debug(f"Successfully imported peft version {_peft_version}")
except importlib_metadata.PackageNotFoundError:
    _peft_available = False


def is_torch_available():
    return _torch_available


def is_torch_xla_available():
    return _torch_xla_available


def is_flax_available():
    return _flax_available


def is_transformers_available():
    return _transformers_available


def is_inflect_available():
    return _inflect_available


def is_unidecode_available():
    return _unidecode_available


def is_onnx_available():
    return _onnx_available


def is_opencv_available():
    return _opencv_available


def is_scipy_available():
    return _scipy_available


def is_librosa_available():
    return _librosa_available


def is_xformers_available():
    return _xformers_available


def is_accelerate_available():
    return _accelerate_available


def is_k_diffusion_available():
    return _k_diffusion_available


def is_note_seq_available():
    return _note_seq_available


def is_wandb_available():
    return _wandb_available


def is_tensorboard_available():
    return _tensorboard_available


def is_compel_available():
    return _compel_available


def is_ftfy_available():
    return _ftfy_available


def is_bs4_available():
    return _bs4_available


def is_torchsde_available():
    return _torchsde_available


def is_invisible_watermark_available():
    return _invisible_watermark_available


def is_peft_available():
    return _peft_available


# docstyle-ignore
FLAX_IMPORT_ERROR = """
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/google/flax and follow the ones that match your environment.
"""

# docstyle-ignore
INFLECT_IMPORT_ERROR = """
{0} requires the inflect library but it was not found in your environment. You can install it with pip: `pip install
inflect`
"""

# docstyle-ignore
PYTORCH_IMPORT_ERROR = """
{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
"""

# docstyle-ignore
ONNX_IMPORT_ERROR = """
{0} requires the onnxruntime library but it was not found in your environment. You can install it with pip: `pip
install onnxruntime`
"""

# docstyle-ignore
OPENCV_IMPORT_ERROR = """
{0} requires the OpenCV library but it was not found in your environment. You can install it with pip: `pip
install opencv-python`
"""

# docstyle-ignore
SCIPY_IMPORT_ERROR = """
{0} requires the scipy library but it was not found in your environment. You can install it with pip: `pip install
scipy`
"""

# docstyle-ignore
LIBROSA_IMPORT_ERROR = """
{0} requires the librosa library but it was not found in your environment.  Checkout the instructions on the
installation page: https://librosa.org/doc/latest/install.html and follow the ones that match your environment.
"""

# docstyle-ignore
TRANSFORMERS_IMPORT_ERROR = """
{0} requires the transformers library but it was not found in your environment. You can install it with pip: `pip
install transformers`
"""

# docstyle-ignore
UNIDECODE_IMPORT_ERROR = """
{0} requires the unidecode library but it was not found in your environment. You can install it with pip: `pip install
Unidecode`
"""

# docstyle-ignore
K_DIFFUSION_IMPORT_ERROR = """
{0} requires the k-diffusion library but it was not found in your environment. You can install it with pip: `pip
install k-diffusion`
"""

# docstyle-ignore
NOTE_SEQ_IMPORT_ERROR = """
{0} requires the note-seq library but it was not found in your environment. You can install it with pip: `pip
install note-seq`
"""

# docstyle-ignore
WANDB_IMPORT_ERROR = """
{0} requires the wandb library but it was not found in your environment. You can install it with pip: `pip
install wandb`
"""

# docstyle-ignore
TENSORBOARD_IMPORT_ERROR = """
{0} requires the tensorboard library but it was not found in your environment. You can install it with pip: `pip
install tensorboard`
"""


# docstyle-ignore
COMPEL_IMPORT_ERROR = """
{0} requires the compel library but it was not found in your environment. You can install it with pip: `pip install compel`
"""

# docstyle-ignore
BS4_IMPORT_ERROR = """
{0} requires the Beautiful Soup library but it was not found in your environment. You can install it with pip:
`pip install beautifulsoup4`. Please note that you may need to restart your runtime after installation.
"""

# docstyle-ignore
FTFY_IMPORT_ERROR = """
{0} requires the ftfy library but it was not found in your environment. Checkout the instructions on the
installation section: https://github.com/rspeer/python-ftfy/tree/master#installing and follow the ones
that match your environment. Please note that you may need to restart your runtime after installation.
"""

# docstyle-ignore
TORCHSDE_IMPORT_ERROR = """
{0} requires the torchsde library but it was not found in your environment. You can install it with pip: `pip install torchsde`
"""

# docstyle-ignore
INVISIBLE_WATERMARK_IMPORT_ERROR = """
{0} requires the invisible-watermark library but it was not found in your environment. You can install it with pip: `pip install invisible-watermark>=0.2.0`
"""


BACKENDS_MAPPING = OrderedDict(
    [
        ("bs4", (is_bs4_available, BS4_IMPORT_ERROR)),
        ("flax", (is_flax_available, FLAX_IMPORT_ERROR)),
        ("inflect", (is_inflect_available, INFLECT_IMPORT_ERROR)),
        ("onnx", (is_onnx_available, ONNX_IMPORT_ERROR)),
        ("opencv", (is_opencv_available, OPENCV_IMPORT_ERROR)),
        ("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
        ("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
        ("transformers", (is_transformers_available, TRANSFORMERS_IMPORT_ERROR)),
        ("unidecode", (is_unidecode_available, UNIDECODE_IMPORT_ERROR)),
        ("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)),
        ("k_diffusion", (is_k_diffusion_available, K_DIFFUSION_IMPORT_ERROR)),
        ("note_seq", (is_note_seq_available, NOTE_SEQ_IMPORT_ERROR)),
        ("wandb", (is_wandb_available, WANDB_IMPORT_ERROR)),
        ("tensorboard", (is_tensorboard_available, TENSORBOARD_IMPORT_ERROR)),
        ("compel", (is_compel_available, COMPEL_IMPORT_ERROR)),
        ("ftfy", (is_ftfy_available, FTFY_IMPORT_ERROR)),
        ("torchsde", (is_torchsde_available, TORCHSDE_IMPORT_ERROR)),
        ("invisible_watermark", (is_invisible_watermark_available, INVISIBLE_WATERMARK_IMPORT_ERROR)),
    ]
)


def requires_backends(obj, backends):
    if not isinstance(backends, (list, tuple)):
        backends = [backends]

    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    checks = (BACKENDS_MAPPING[backend] for backend in backends)
    failed = [msg.format(name) for available, msg in checks if not available()]
    if failed:
        raise ImportError("".join(failed))

    if name in [
        "VersatileDiffusionTextToImagePipeline",
        "VersatileDiffusionPipeline",
        "VersatileDiffusionDualGuidedPipeline",
        "StableDiffusionImageVariationPipeline",
        "UnCLIPPipeline",
    ] and is_transformers_version("<", "4.25.0"):
        raise ImportError(
            f"You need to install `transformers>=4.25` in order to use {name}: \n```\n pip install"
            " --upgrade transformers \n```"
        )

    if name in ["StableDiffusionDepth2ImgPipeline", "StableDiffusionPix2PixZeroPipeline"] and is_transformers_version(
        "<", "4.26.0"
    ):
        raise ImportError(
            f"You need to install `transformers>=4.26` in order to use {name}: \n```\n pip install"
            " --upgrade transformers \n```"
        )


class DummyObject(type):
    """
    Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by
    `requires_backend` each time a user tries to access any method of that class.
    """

    def __getattr__(cls, key):
        if key.startswith("_") and key not in ["_load_connected_pipes", "_is_onnx"]:
            return super().__getattr__(cls, key)
        requires_backends(cls, cls._backends)


# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L319
def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str):
    """
    Args:
    Compares a library version to some requirement using a given operation.
        library_or_version (`str` or `packaging.version.Version`):
            A library name or a version to check.
        operation (`str`):
            A string representation of an operator, such as `">"` or `"<="`.
        requirement_version (`str`):
            The version to compare the library version against
    """
    if operation not in STR_OPERATION_TO_FUNC.keys():
        raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}")
    operation = STR_OPERATION_TO_FUNC[operation]
    if isinstance(library_or_version, str):
        library_or_version = parse(importlib_metadata.version(library_or_version))
    return operation(library_or_version, parse(requirement_version))


# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L338
def is_torch_version(operation: str, version: str):
    """
    Args:
    Compares the current PyTorch version to a given reference with an operation.
        operation (`str`):
            A string representation of an operator, such as `">"` or `"<="`
        version (`str`):
            A string version of PyTorch
    """
    return compare_versions(parse(_torch_version), operation, version)


def is_transformers_version(operation: str, version: str):
    """
    Args:
    Compares the current Transformers version to a given reference with an operation.
        operation (`str`):
            A string representation of an operator, such as `">"` or `"<="`
        version (`str`):
            A version string
    """
    if not _transformers_available:
        return False
    return compare_versions(parse(_transformers_version), operation, version)


def is_accelerate_version(operation: str, version: str):
    """
    Args:
    Compares the current Accelerate version to a given reference with an operation.
        operation (`str`):
            A string representation of an operator, such as `">"` or `"<="`
        version (`str`):
            A version string
    """
    if not _accelerate_available:
        return False
    return compare_versions(parse(_accelerate_version), operation, version)


def is_k_diffusion_version(operation: str, version: str):
    """
    Args:
    Compares the current k-diffusion version to a given reference with an operation.
        operation (`str`):
            A string representation of an operator, such as `">"` or `"<="`
        version (`str`):
            A version string
    """
    if not _k_diffusion_available:
        return False
    return compare_versions(parse(_k_diffusion_version), operation, version)


def get_objects_from_module(module):
    """
    Args:
    Returns a dict of object names and values in a module, while skipping private/internal objects
        module (ModuleType):
            Module to extract the objects from.

    Returns:
        dict: Dictionary of object names and corresponding values
    """

    objects = {}
    for name in dir(module):
        if name.startswith("_"):
            continue
        objects[name] = getattr(module, name)

    return objects


class OptionalDependencyNotAvailable(BaseException):
    """An error indicating that an optional dependency of Diffusers was not found in the environment."""


class _LazyModule(ModuleType):
    """
    Module class that surfaces all objects but only performs associated imports when the objects are requested.
    """

    # Very heavily inspired by optuna.integration._IntegrationModule
    # https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py
    def __init__(self, name, module_file, import_structure, module_spec=None, extra_objects=None):
        super().__init__(name)
        self._modules = set(import_structure.keys())
        self._class_to_module = {}
        for key, values in import_structure.items():
            for value in values:
                self._class_to_module[value] = key
        # Needed for autocompletion in an IDE
        self.__all__ = list(import_structure.keys()) + list(chain(*import_structure.values()))
        self.__file__ = module_file
        self.__spec__ = module_spec
        self.__path__ = [os.path.dirname(module_file)]
        self._objects = {} if extra_objects is None else extra_objects
        self._name = name
        self._import_structure = import_structure

    # Needed for autocompletion in an IDE
    def __dir__(self):
        result = super().__dir__()
        # The elements of self.__all__ that are submodules may or may not be in the dir already, depending on whether
        # they have been accessed or not. So we only add the elements of self.__all__ that are not already in the dir.
        for attr in self.__all__:
            if attr not in result:
                result.append(attr)
        return result

    def __getattr__(self, name: str) -> Any:
        if name in self._objects:
            return self._objects[name]
        if name in self._modules:
            value = self._get_module(name)
        elif name in self._class_to_module.keys():
            module = self._get_module(self._class_to_module[name])
            value = getattr(module, name)
        else:
            raise AttributeError(f"module {self.__name__} has no attribute {name}")

        setattr(self, name, value)
        return value

    def _get_module(self, module_name: str):
        try:
            return importlib.import_module("." + module_name, self.__name__)
        except Exception as e:
            raise RuntimeError(
                f"Failed to import {self.__name__}.{module_name} because of the following error (look up to see its"
                f" traceback):\n{e}"
            ) from e

    def __reduce__(self):
        return (self.__class__, (self._name, self.__file__, self._import_structure))