File size: 50,468 Bytes
0aaa1f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import math
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.fft as fft
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection

from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel
from ...models.lora import adjust_lora_scale_text_encoder
from ...models.unets.unet_motion_model import MotionAdapter
from ...schedulers import (
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
)
from ...utils import (
    USE_PEFT_BACKEND,
    BaseOutput,
    deprecate,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
        >>> from diffusers.utils import export_to_gif

        >>> adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
        >>> pipe = AnimateDiffPipeline.from_pretrained("frankjoshua/toonyou_beta6", motion_adapter=adapter)
        >>> pipe.scheduler = DDIMScheduler(beta_schedule="linear", steps_offset=1, clip_sample=False)
        >>> output = pipe(prompt="A corgi walking in the park")
        >>> frames = output.frames[0]
        >>> export_to_gif(frames, "animation.gif")
        ```
"""


def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"):
    batch_size, channels, num_frames, height, width = video.shape
    outputs = []
    for batch_idx in range(batch_size):
        batch_vid = video[batch_idx].permute(1, 0, 2, 3)
        batch_output = processor.postprocess(batch_vid, output_type)

        outputs.append(batch_output)

    if output_type == "np":
        outputs = np.stack(outputs)

    elif output_type == "pt":
        outputs = torch.stack(outputs)

    elif not output_type == "pil":
        raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil]")

    return outputs


def _get_freeinit_freq_filter(
    shape: Tuple[int, ...],
    device: Union[str, torch.dtype],
    filter_type: str,
    order: float,
    spatial_stop_frequency: float,
    temporal_stop_frequency: float,
) -> torch.Tensor:
    r"""Returns the FreeInit filter based on filter type and other input conditions."""

    T, H, W = shape[-3], shape[-2], shape[-1]
    mask = torch.zeros(shape)

    if spatial_stop_frequency == 0 or temporal_stop_frequency == 0:
        return mask

    if filter_type == "butterworth":

        def retrieve_mask(x):
            return 1 / (1 + (x / spatial_stop_frequency**2) ** order)
    elif filter_type == "gaussian":

        def retrieve_mask(x):
            return math.exp(-1 / (2 * spatial_stop_frequency**2) * x)
    elif filter_type == "ideal":

        def retrieve_mask(x):
            return 1 if x <= spatial_stop_frequency * 2 else 0
    else:
        raise NotImplementedError("`filter_type` must be one of gaussian, butterworth or ideal")

    for t in range(T):
        for h in range(H):
            for w in range(W):
                d_square = (
                    ((spatial_stop_frequency / temporal_stop_frequency) * (2 * t / T - 1)) ** 2
                    + (2 * h / H - 1) ** 2
                    + (2 * w / W - 1) ** 2
                )
                mask[..., t, h, w] = retrieve_mask(d_square)

    return mask.to(device)


def _freq_mix_3d(x: torch.Tensor, noise: torch.Tensor, LPF: torch.Tensor) -> torch.Tensor:
    r"""Noise reinitialization."""
    # FFT
    x_freq = fft.fftn(x, dim=(-3, -2, -1))
    x_freq = fft.fftshift(x_freq, dim=(-3, -2, -1))
    noise_freq = fft.fftn(noise, dim=(-3, -2, -1))
    noise_freq = fft.fftshift(noise_freq, dim=(-3, -2, -1))

    # frequency mix
    HPF = 1 - LPF
    x_freq_low = x_freq * LPF
    noise_freq_high = noise_freq * HPF
    x_freq_mixed = x_freq_low + noise_freq_high  # mix in freq domain

    # IFFT
    x_freq_mixed = fft.ifftshift(x_freq_mixed, dim=(-3, -2, -1))
    x_mixed = fft.ifftn(x_freq_mixed, dim=(-3, -2, -1)).real

    return x_mixed


@dataclass
class AnimateDiffPipelineOutput(BaseOutput):
    frames: Union[torch.Tensor, np.ndarray]


class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin):
    r"""
    Pipeline for text-to-video generation.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer (`CLIPTokenizer`):
            A [`~transformers.CLIPTokenizer`] to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents.
        motion_adapter ([`MotionAdapter`]):
            A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
    """

    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
    _optional_components = ["feature_extractor", "image_encoder"]
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        motion_adapter: MotionAdapter,
        scheduler: Union[
            DDIMScheduler,
            PNDMScheduler,
            LMSDiscreteScheduler,
            EulerDiscreteScheduler,
            EulerAncestralDiscreteScheduler,
            DPMSolverMultistepScheduler,
        ],
        feature_extractor: CLIPImageProcessor = None,
        image_encoder: CLIPVisionModelWithProjection = None,
    ):
        super().__init__()
        unet = UNetMotionModel.from_unet2d(unet, motion_adapter)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            motion_adapter=motion_adapter,
            scheduler=scheduler,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if not USE_PEFT_BACKEND:
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None

            if clip_skip is None:
                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder, lora_scale)

        return prompt_embeds, negative_prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)

            return image_embeds, uncond_image_embeds

    # Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
    def decode_latents(self, latents):
        latents = 1 / self.vae.config.scaling_factor * latents

        batch_size, channels, num_frames, height, width = latents.shape
        latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)

        image = self.vae.decode(latents).sample
        video = (
            image[None, :]
            .reshape(
                (
                    batch_size,
                    num_frames,
                    -1,
                )
                + image.shape[2:]
            )
            .permute(0, 2, 1, 3, 4)
        )
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        video = video.float()
        return video

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
        r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.

        The suffixes after the scaling factors represent the stages where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

    @property
    def free_init_enabled(self):
        return hasattr(self, "_free_init_num_iters") and self._free_init_num_iters is not None

    def enable_free_init(
        self,
        num_iters: int = 3,
        use_fast_sampling: bool = False,
        method: str = "butterworth",
        order: int = 4,
        spatial_stop_frequency: float = 0.25,
        temporal_stop_frequency: float = 0.25,
        generator: torch.Generator = None,
    ):
        """Enables the FreeInit mechanism as in https://arxiv.org/abs/2312.07537.

        This implementation has been adapted from the [official repository](https://github.com/TianxingWu/FreeInit).

        Args:
            num_iters (`int`, *optional*, defaults to `3`):
                Number of FreeInit noise re-initialization iterations.
            use_fast_sampling (`bool`, *optional*, defaults to `False`):
                Whether or not to speedup sampling procedure at the cost of probably lower quality results. Enables
                the "Coarse-to-Fine Sampling" strategy, as mentioned in the paper, if set to `True`.
            method (`str`, *optional*, defaults to `butterworth`):
                Must be one of `butterworth`, `ideal` or `gaussian` to use as the filtering method for the
                FreeInit low pass filter.
            order (`int`, *optional*, defaults to `4`):
                Order of the filter used in `butterworth` method. Larger values lead to `ideal` method behaviour
                whereas lower values lead to `gaussian` method behaviour.
            spatial_stop_frequency (`float`, *optional*, defaults to `0.25`):
                Normalized stop frequency for spatial dimensions. Must be between 0 to 1. Referred to as `d_s` in
                the original implementation.
            temporal_stop_frequency (`float`, *optional*, defaults to `0.25`):
                Normalized stop frequency for temporal dimensions. Must be between 0 to 1. Referred to as `d_t` in
                the original implementation.
            generator (`torch.Generator`, *optional*, defaults to `0.25`):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                FreeInit generation deterministic.
        """
        self._free_init_num_iters = num_iters
        self._free_init_use_fast_sampling = use_fast_sampling
        self._free_init_method = method
        self._free_init_order = order
        self._free_init_spatial_stop_frequency = spatial_stop_frequency
        self._free_init_temporal_stop_frequency = temporal_stop_frequency
        self._free_init_generator = generator

    def disable_free_init(self):
        """Disables the FreeInit mechanism if enabled."""
        self._free_init_num_iters = None

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
    def check_inputs(
        self,
        prompt,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        callback_on_step_end_tensor_inputs=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

    # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents
    def prepare_latents(
        self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
    ):
        shape = (
            batch_size,
            num_channels_latents,
            num_frames,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def _denoise_loop(
        self,
        timesteps,
        num_inference_steps,
        do_classifier_free_guidance,
        guidance_scale,
        num_warmup_steps,
        prompt_embeds,
        negative_prompt_embeds,
        latents,
        cross_attention_kwargs,
        added_cond_kwargs,
        extra_step_kwargs,
        callback,
        callback_steps,
        callback_on_step_end,
        callback_on_step_end_tensor_inputs,
    ):
        """Denoising loop for AnimateDiff."""
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                    added_cond_kwargs=added_cond_kwargs,
                ).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        return latents

    def _free_init_loop(
        self,
        height,
        width,
        num_frames,
        num_channels_latents,
        batch_size,
        num_videos_per_prompt,
        denoise_args,
        device,
    ):
        """Denoising loop for AnimateDiff using FreeInit noise reinitialization technique."""

        latents = denoise_args.get("latents")
        prompt_embeds = denoise_args.get("prompt_embeds")
        timesteps = denoise_args.get("timesteps")
        num_inference_steps = denoise_args.get("num_inference_steps")

        latent_shape = (
            batch_size * num_videos_per_prompt,
            num_channels_latents,
            num_frames,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        free_init_filter_shape = (
            1,
            num_channels_latents,
            num_frames,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        free_init_freq_filter = _get_freeinit_freq_filter(
            shape=free_init_filter_shape,
            device=device,
            filter_type=self._free_init_method,
            order=self._free_init_order,
            spatial_stop_frequency=self._free_init_spatial_stop_frequency,
            temporal_stop_frequency=self._free_init_temporal_stop_frequency,
        )

        with self.progress_bar(total=self._free_init_num_iters) as free_init_progress_bar:
            for i in range(self._free_init_num_iters):
                # For the first FreeInit iteration, the original latent is used without modification.
                # Subsequent iterations apply the noise reinitialization technique.
                if i == 0:
                    initial_noise = latents.detach().clone()
                else:
                    current_diffuse_timestep = (
                        self.scheduler.config.num_train_timesteps - 1
                    )  # diffuse to t=999 noise level
                    diffuse_timesteps = torch.full((batch_size,), current_diffuse_timestep).long()
                    z_T = self.scheduler.add_noise(
                        original_samples=latents, noise=initial_noise, timesteps=diffuse_timesteps.to(device)
                    ).to(dtype=torch.float32)
                    z_rand = randn_tensor(
                        shape=latent_shape,
                        generator=self._free_init_generator,
                        device=device,
                        dtype=torch.float32,
                    )
                    latents = _freq_mix_3d(z_T, z_rand, LPF=free_init_freq_filter)
                    latents = latents.to(prompt_embeds.dtype)

                # Coarse-to-Fine Sampling for faster inference (can lead to lower quality)
                if self._free_init_use_fast_sampling:
                    current_num_inference_steps = int(num_inference_steps / self._free_init_num_iters * (i + 1))
                    self.scheduler.set_timesteps(current_num_inference_steps, device=device)
                    timesteps = self.scheduler.timesteps
                    denoise_args.update({"timesteps": timesteps, "num_inference_steps": current_num_inference_steps})

                num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
                denoise_args.update({"latents": latents, "num_warmup_steps": num_warmup_steps})
                latents = self._denoise_loop(**denoise_args)

                free_init_progress_bar.update()

        return latents

    def _retrieve_video_frames(self, latents, output_type, return_dict):
        """Helper function to handle latents to output conversion."""
        if output_type == "latent":
            return AnimateDiffPipelineOutput(frames=latents)

        video_tensor = self.decode_latents(latents)
        video = tensor2vid(video_tensor, self.image_processor, output_type=output_type)

        if not return_dict:
            return (video,)

        return AnimateDiffPipelineOutput(frames=video)

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        num_frames: Optional[int] = 16,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_videos_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated video.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated video.
            num_frames (`int`, *optional*, defaults to 16):
                The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
                amounts to 2 seconds of video.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
                `(batch_size, num_channel, num_frames, height, width)`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*):
                Optional image input to work with IP Adapters.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated video. Choose between `torch.FloatTensor`, `PIL.Image` or
                `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
                of a plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeine class.

        Examples:

        Returns:
            [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is
                returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
        """

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        num_videos_per_prompt = 1

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            device,
            num_videos_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
            clip_skip=self.clip_skip,
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        if ip_adapter_image is not None:
            output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
            image_embeds, negative_image_embeds = self.encode_image(
                ip_adapter_image, device, num_videos_per_prompt, output_hidden_state
            )
            if self.do_classifier_free_guidance:
                image_embeds = torch.cat([negative_image_embeds, image_embeds])

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps
        self._num_timesteps = len(timesteps)

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_videos_per_prompt,
            num_channels_latents,
            num_frames,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Add image embeds for IP-Adapter
        added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        denoise_args = {
            "timesteps": timesteps,
            "num_inference_steps": num_inference_steps,
            "do_classifier_free_guidance": self.do_classifier_free_guidance,
            "guidance_scale": guidance_scale,
            "num_warmup_steps": num_warmup_steps,
            "prompt_embeds": prompt_embeds,
            "negative_prompt_embeds": negative_prompt_embeds,
            "latents": latents,
            "cross_attention_kwargs": self.cross_attention_kwargs,
            "added_cond_kwargs": added_cond_kwargs,
            "extra_step_kwargs": extra_step_kwargs,
            "callback": callback,
            "callback_steps": callback_steps,
            "callback_on_step_end": callback_on_step_end,
            "callback_on_step_end_tensor_inputs": callback_on_step_end_tensor_inputs,
        }

        if self.free_init_enabled:
            latents = self._free_init_loop(
                height=height,
                width=width,
                num_frames=num_frames,
                num_channels_latents=num_channels_latents,
                batch_size=batch_size,
                num_videos_per_prompt=num_videos_per_prompt,
                denoise_args=denoise_args,
                device=device,
            )
        else:
            latents = self._denoise_loop(**denoise_args)

        video = self._retrieve_video_frames(latents, output_type, return_dict)

        # 9. Offload all models
        self.maybe_free_model_hooks()

        return video