File size: 8,698 Bytes
0aaa1f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Dict, Union

import torch
from huggingface_hub.utils import validate_hf_hub_args
from safetensors import safe_open

from ..utils import (
    _get_model_file,
    is_transformers_available,
    logging,
)


if is_transformers_available():
    from transformers import (
        CLIPImageProcessor,
        CLIPVisionModelWithProjection,
    )

    from ..models.attention_processor import (
        IPAdapterAttnProcessor,
        IPAdapterAttnProcessor2_0,
    )

logger = logging.get_logger(__name__)


class IPAdapterMixin:
    """Mixin for handling IP Adapters."""

    @validate_hf_hub_args
    def load_ip_adapter(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        subfolder: str,
        weight_name: str,
        **kwargs,
    ):
        """
        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
        """

        # Load the main state dict first.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            model_file = _get_model_file(
                pretrained_model_name_or_path_or_dict,
                weights_name=weight_name,
                cache_dir=cache_dir,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
                subfolder=subfolder,
                user_agent=user_agent,
            )
            if weight_name.endswith(".safetensors"):
                state_dict = {"image_proj": {}, "ip_adapter": {}}
                with safe_open(model_file, framework="pt", device="cpu") as f:
                    for key in f.keys():
                        if key.startswith("image_proj."):
                            state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
                        elif key.startswith("ip_adapter."):
                            state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
            else:
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        keys = list(state_dict.keys())
        if keys != ["image_proj", "ip_adapter"]:
            raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")

        # load CLIP image encoder here if it has not been registered to the pipeline yet
        if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
            if not isinstance(pretrained_model_name_or_path_or_dict, dict):
                logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}")
                image_encoder = CLIPVisionModelWithProjection.from_pretrained(
                    pretrained_model_name_or_path_or_dict,
                    subfolder=Path(subfolder, "image_encoder").as_posix(),
                ).to(self.device, dtype=self.dtype)
                self.image_encoder = image_encoder
                self.register_to_config(image_encoder=["transformers", "CLIPVisionModelWithProjection"])
            else:
                raise ValueError("`image_encoder` cannot be None when using IP Adapters.")

        # create feature extractor if it has not been registered to the pipeline yet
        if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
            self.feature_extractor = CLIPImageProcessor()
            self.register_to_config(feature_extractor=["transformers", "CLIPImageProcessor"])

        # load ip-adapter into unet
        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
        unet._load_ip_adapter_weights(state_dict)

    def set_ip_adapter_scale(self, scale):
        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
        for attn_processor in unet.attn_processors.values():
            if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)):
                attn_processor.scale = scale

    def unload_ip_adapter(self):
        """
        Unloads the IP Adapter weights

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
        >>> pipeline.unload_ip_adapter()
        >>> ...
        ```
        """
        # remove CLIP image encoder
        if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
            self.image_encoder = None
            self.register_to_config(image_encoder=[None, None])

        # remove feature extractor
        if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
            self.feature_extractor = None
            self.register_to_config(feature_extractor=[None, None])

        # remove hidden encoder
        self.unet.encoder_hid_proj = None
        self.config.encoder_hid_dim_type = None

        # restore original Unet attention processors layers
        self.unet.set_default_attn_processor()