File size: 50,635 Bytes
0aaa1f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from collections import OrderedDict

from huggingface_hub.utils import validate_hf_hub_args

from ..configuration_utils import ConfigMixin
from .controlnet import (
    StableDiffusionControlNetImg2ImgPipeline,
    StableDiffusionControlNetInpaintPipeline,
    StableDiffusionControlNetPipeline,
    StableDiffusionXLControlNetImg2ImgPipeline,
    StableDiffusionXLControlNetInpaintPipeline,
    StableDiffusionXLControlNetPipeline,
)
from .deepfloyd_if import IFImg2ImgPipeline, IFInpaintingPipeline, IFPipeline
from .kandinsky import (
    KandinskyCombinedPipeline,
    KandinskyImg2ImgCombinedPipeline,
    KandinskyImg2ImgPipeline,
    KandinskyInpaintCombinedPipeline,
    KandinskyInpaintPipeline,
    KandinskyPipeline,
)
from .kandinsky2_2 import (
    KandinskyV22CombinedPipeline,
    KandinskyV22Img2ImgCombinedPipeline,
    KandinskyV22Img2ImgPipeline,
    KandinskyV22InpaintCombinedPipeline,
    KandinskyV22InpaintPipeline,
    KandinskyV22Pipeline,
)
from .kandinsky3 import Kandinsky3Img2ImgPipeline, Kandinsky3Pipeline
from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline
from .pixart_alpha import PixArtAlphaPipeline
from .stable_diffusion import (
    StableDiffusionImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
    StableDiffusionPipeline,
)
from .stable_diffusion_xl import (
    StableDiffusionXLImg2ImgPipeline,
    StableDiffusionXLInpaintPipeline,
    StableDiffusionXLPipeline,
)
from .wuerstchen import WuerstchenCombinedPipeline, WuerstchenDecoderPipeline


AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
    [
        ("stable-diffusion", StableDiffusionPipeline),
        ("stable-diffusion-xl", StableDiffusionXLPipeline),
        ("if", IFPipeline),
        ("kandinsky", KandinskyCombinedPipeline),
        ("kandinsky22", KandinskyV22CombinedPipeline),
        ("kandinsky3", Kandinsky3Pipeline),
        ("stable-diffusion-controlnet", StableDiffusionControlNetPipeline),
        ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetPipeline),
        ("wuerstchen", WuerstchenCombinedPipeline),
        ("lcm", LatentConsistencyModelPipeline),
        ("pixart", PixArtAlphaPipeline),
    ]
)

AUTO_IMAGE2IMAGE_PIPELINES_MAPPING = OrderedDict(
    [
        ("stable-diffusion", StableDiffusionImg2ImgPipeline),
        ("stable-diffusion-xl", StableDiffusionXLImg2ImgPipeline),
        ("if", IFImg2ImgPipeline),
        ("kandinsky", KandinskyImg2ImgCombinedPipeline),
        ("kandinsky22", KandinskyV22Img2ImgCombinedPipeline),
        ("kandinsky3", Kandinsky3Img2ImgPipeline),
        ("stable-diffusion-controlnet", StableDiffusionControlNetImg2ImgPipeline),
        ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetImg2ImgPipeline),
        ("lcm", LatentConsistencyModelImg2ImgPipeline),
    ]
)

AUTO_INPAINT_PIPELINES_MAPPING = OrderedDict(
    [
        ("stable-diffusion", StableDiffusionInpaintPipeline),
        ("stable-diffusion-xl", StableDiffusionXLInpaintPipeline),
        ("if", IFInpaintingPipeline),
        ("kandinsky", KandinskyInpaintCombinedPipeline),
        ("kandinsky22", KandinskyV22InpaintCombinedPipeline),
        ("stable-diffusion-controlnet", StableDiffusionControlNetInpaintPipeline),
        ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetInpaintPipeline),
    ]
)

_AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict(
    [
        ("kandinsky", KandinskyPipeline),
        ("kandinsky22", KandinskyV22Pipeline),
        ("wuerstchen", WuerstchenDecoderPipeline),
    ]
)
_AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict(
    [
        ("kandinsky", KandinskyImg2ImgPipeline),
        ("kandinsky22", KandinskyV22Img2ImgPipeline),
    ]
)
_AUTO_INPAINT_DECODER_PIPELINES_MAPPING = OrderedDict(
    [
        ("kandinsky", KandinskyInpaintPipeline),
        ("kandinsky22", KandinskyV22InpaintPipeline),
    ]
)

SUPPORTED_TASKS_MAPPINGS = [
    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
    AUTO_INPAINT_PIPELINES_MAPPING,
    _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING,
    _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING,
    _AUTO_INPAINT_DECODER_PIPELINES_MAPPING,
]


def _get_connected_pipeline(pipeline_cls):
    # for now connected pipelines can only be loaded from decoder pipelines, such as kandinsky-community/kandinsky-2-2-decoder
    if pipeline_cls in _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING.values():
        return _get_task_class(
            AUTO_TEXT2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False
        )
    if pipeline_cls in _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING.values():
        return _get_task_class(
            AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False
        )
    if pipeline_cls in _AUTO_INPAINT_DECODER_PIPELINES_MAPPING.values():
        return _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False)


def _get_task_class(mapping, pipeline_class_name, throw_error_if_not_exist: bool = True):
    def get_model(pipeline_class_name):
        for task_mapping in SUPPORTED_TASKS_MAPPINGS:
            for model_name, pipeline in task_mapping.items():
                if pipeline.__name__ == pipeline_class_name:
                    return model_name

    model_name = get_model(pipeline_class_name)

    if model_name is not None:
        task_class = mapping.get(model_name, None)
        if task_class is not None:
            return task_class

    if throw_error_if_not_exist:
        raise ValueError(f"AutoPipeline can't find a pipeline linked to {pipeline_class_name} for {model_name}")


def _get_signature_keys(obj):
    parameters = inspect.signature(obj.__init__).parameters
    required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
    optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
    expected_modules = set(required_parameters.keys()) - {"self"}
    return expected_modules, optional_parameters


class AutoPipelineForText2Image(ConfigMixin):
    r"""

    [`AutoPipelineForText2Image`] is a generic pipeline class that instantiates a text-to-image pipeline class. The
    specific underlying pipeline class is automatically selected from either the
    [`~AutoPipelineForText2Image.from_pretrained`] or [`~AutoPipelineForText2Image.from_pipe`] methods.

    This class cannot be instantiated using `__init__()` (throws an error).

    Class attributes:

        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.

    """

    config_name = "model_index.json"

    def __init__(self, *args, **kwargs):
        raise EnvironmentError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
            f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
        )

    @classmethod
    @validate_hf_hub_args
    def from_pretrained(cls, pretrained_model_or_path, **kwargs):
        r"""
        Instantiates a text-to-image Pytorch diffusion pipeline from pretrained pipeline weight.

        The from_pretrained() method takes care of returning the correct pipeline class instance by:
            1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
               config object
            2. Find the text-to-image pipeline linked to the pipeline class using pattern matching on pipeline class
               name.

        If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetPipeline`] object.

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
                same device.

                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            max_memory (`Dict`, *optional*):
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
            offload_folder (`str` or `os.PathLike`, *optional*):
                The path to offload weights if device_map contains the value `"disk"`.
            offload_state_dict (`bool`, *optional*):
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
            variant (`str`, *optional*):
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.

        <Tip>

        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.

        </Tip>

        Examples:

        ```py
        >>> from diffusers import AutoPipelineForText2Image

        >>> pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> image = pipeline(prompt).images[0]
        ```
        """
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        token = kwargs.pop("token", None)
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        load_config_kwargs = {
            "cache_dir": cache_dir,
            "force_download": force_download,
            "resume_download": resume_download,
            "proxies": proxies,
            "token": token,
            "local_files_only": local_files_only,
            "revision": revision,
        }

        config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
        orig_class_name = config["_class_name"]

        if "controlnet" in kwargs:
            orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline")

        text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, orig_class_name)

        kwargs = {**load_config_kwargs, **kwargs}
        return text_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs)

    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
        Instantiates a text-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class.

        The from_pipe() method takes care of returning the correct pipeline class instance by finding the text-to-image
        pipeline linked to the pipeline class using pattern matching on pipeline class name.

        All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
        additional memoery.

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pipeline (`DiffusionPipeline`):
                an instantiated `DiffusionPipeline` object

        ```py
        >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image

        >>> pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
        ...     "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
        ... )

        >>> pipe_t2i = AutoPipelineForText2Image.from_pipe(pipe_i2i)
        >>> image = pipe_t2i(prompt).images[0]
        ```
        """

        original_config = dict(pipeline.config)
        original_cls_name = pipeline.__class__.__name__

        # derive the pipeline class to instantiate
        text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, original_cls_name)

        if "controlnet" in kwargs:
            if kwargs["controlnet"] is not None:
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
                    text_2_image_cls.__name__.replace("ControlNet", "").replace("Pipeline", "ControlNetPipeline"),
                )
            else:
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
                    text_2_image_cls.__name__.replace("ControlNetPipeline", "Pipeline"),
                )

        # define expected module and optional kwargs given the pipeline signature
        expected_modules, optional_kwargs = _get_signature_keys(text_2_image_cls)

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)

        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        original_class_obj = {
            k: pipeline.components[k]
            for k, v in pipeline.components.items()
            if k in expected_modules and k not in passed_class_obj
        }

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k, v in original_config.items()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config that were not expected by original pipeline is stored as private attribute
        # we will pass them as optional arguments if they can be accepted by the pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        text_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}

        # store unused config as private attribute
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
            for k, v in original_config.items()
            if k not in text_2_image_kwargs
        }

        missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(text_2_image_kwargs.keys())

        if len(missing_modules) > 0:
            raise ValueError(
                f"Pipeline {text_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
            )

        model = text_2_image_cls(**text_2_image_kwargs)
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
        model.register_to_config(**unused_original_config)

        return model


class AutoPipelineForImage2Image(ConfigMixin):
    r"""

    [`AutoPipelineForImage2Image`] is a generic pipeline class that instantiates an image-to-image pipeline class. The
    specific underlying pipeline class is automatically selected from either the
    [`~AutoPipelineForImage2Image.from_pretrained`] or [`~AutoPipelineForImage2Image.from_pipe`] methods.

    This class cannot be instantiated using `__init__()` (throws an error).

    Class attributes:

        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.

    """

    config_name = "model_index.json"

    def __init__(self, *args, **kwargs):
        raise EnvironmentError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
            f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
        )

    @classmethod
    @validate_hf_hub_args
    def from_pretrained(cls, pretrained_model_or_path, **kwargs):
        r"""
        Instantiates a image-to-image Pytorch diffusion pipeline from pretrained pipeline weight.

        The from_pretrained() method takes care of returning the correct pipeline class instance by:
            1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
               config object
            2. Find the image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class
               name.

        If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetImg2ImgPipeline`]
        object.

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
                same device.

                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            max_memory (`Dict`, *optional*):
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
            offload_folder (`str` or `os.PathLike`, *optional*):
                The path to offload weights if device_map contains the value `"disk"`.
            offload_state_dict (`bool`, *optional*):
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
            variant (`str`, *optional*):
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.

        <Tip>

        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.

        </Tip>

        Examples:

        ```py
        >>> from diffusers import AutoPipelineForImage2Image

        >>> pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> image = pipeline(prompt, image).images[0]
        ```
        """
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        token = kwargs.pop("token", None)
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        load_config_kwargs = {
            "cache_dir": cache_dir,
            "force_download": force_download,
            "resume_download": resume_download,
            "proxies": proxies,
            "token": token,
            "local_files_only": local_files_only,
            "revision": revision,
        }

        config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
        orig_class_name = config["_class_name"]

        if "controlnet" in kwargs:
            orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline")

        image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, orig_class_name)

        kwargs = {**load_config_kwargs, **kwargs}
        return image_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs)

    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
        Instantiates a image-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class.

        The from_pipe() method takes care of returning the correct pipeline class instance by finding the
        image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class name.

        All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
        additional memoery.

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pipeline (`DiffusionPipeline`):
                an instantiated `DiffusionPipeline` object

        Examples:

        ```py
        >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image

        >>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
        ...     "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
        ... )

        >>> pipe_i2i = AutoPipelineForImage2Image.from_pipe(pipe_t2i)
        >>> image = pipe_i2i(prompt, image).images[0]
        ```
        """

        original_config = dict(pipeline.config)
        original_cls_name = pipeline.__class__.__name__

        # derive the pipeline class to instantiate
        image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, original_cls_name)

        if "controlnet" in kwargs:
            if kwargs["controlnet"] is not None:
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
                    image_2_image_cls.__name__.replace("ControlNet", "").replace(
                        "Img2ImgPipeline", "ControlNetImg2ImgPipeline"
                    ),
                )
            else:
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
                    image_2_image_cls.__name__.replace("ControlNetImg2ImgPipeline", "Img2ImgPipeline"),
                )

        # define expected module and optional kwargs given the pipeline signature
        expected_modules, optional_kwargs = _get_signature_keys(image_2_image_cls)

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)

        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        original_class_obj = {
            k: pipeline.components[k]
            for k, v in pipeline.components.items()
            if k in expected_modules and k not in passed_class_obj
        }

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k, v in original_config.items()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config attribute that were not expected by original pipeline is stored as its private attribute
        # we will pass them as optional arguments if they can be accepted by the pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        image_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}

        # store unused config as private attribute
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
            for k, v in original_config.items()
            if k not in image_2_image_kwargs
        }

        missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(image_2_image_kwargs.keys())

        if len(missing_modules) > 0:
            raise ValueError(
                f"Pipeline {image_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
            )

        model = image_2_image_cls(**image_2_image_kwargs)
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
        model.register_to_config(**unused_original_config)

        return model


class AutoPipelineForInpainting(ConfigMixin):
    r"""

    [`AutoPipelineForInpainting`] is a generic pipeline class that instantiates an inpainting pipeline class. The
    specific underlying pipeline class is automatically selected from either the
    [`~AutoPipelineForInpainting.from_pretrained`] or [`~AutoPipelineForInpainting.from_pipe`] methods.

    This class cannot be instantiated using `__init__()` (throws an error).

    Class attributes:

        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.

    """

    config_name = "model_index.json"

    def __init__(self, *args, **kwargs):
        raise EnvironmentError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
            f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
        )

    @classmethod
    @validate_hf_hub_args
    def from_pretrained(cls, pretrained_model_or_path, **kwargs):
        r"""
        Instantiates a inpainting Pytorch diffusion pipeline from pretrained pipeline weight.

        The from_pretrained() method takes care of returning the correct pipeline class instance by:
            1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
               config object
            2. Find the inpainting pipeline linked to the pipeline class using pattern matching on pipeline class name.

        If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetInpaintPipeline`]
        object.

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
                same device.

                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            max_memory (`Dict`, *optional*):
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
            offload_folder (`str` or `os.PathLike`, *optional*):
                The path to offload weights if device_map contains the value `"disk"`.
            offload_state_dict (`bool`, *optional*):
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
            variant (`str`, *optional*):
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.

        <Tip>

        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.

        </Tip>

        Examples:

        ```py
        >>> from diffusers import AutoPipelineForInpainting

        >>> pipeline = AutoPipelineForInpainting.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> image = pipeline(prompt, image=init_image, mask_image=mask_image).images[0]
        ```
        """
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        token = kwargs.pop("token", None)
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        load_config_kwargs = {
            "cache_dir": cache_dir,
            "force_download": force_download,
            "resume_download": resume_download,
            "proxies": proxies,
            "token": token,
            "local_files_only": local_files_only,
            "revision": revision,
        }

        config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
        orig_class_name = config["_class_name"]

        if "controlnet" in kwargs:
            orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline")

        inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, orig_class_name)

        kwargs = {**load_config_kwargs, **kwargs}
        return inpainting_cls.from_pretrained(pretrained_model_or_path, **kwargs)

    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
        Instantiates a inpainting Pytorch diffusion pipeline from another instantiated diffusion pipeline class.

        The from_pipe() method takes care of returning the correct pipeline class instance by finding the inpainting
        pipeline linked to the pipeline class using pattern matching on pipeline class name.

        All the modules the pipeline class contain will be used to initialize the new pipeline without reallocating
        additional memoery.

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pipeline (`DiffusionPipeline`):
                an instantiated `DiffusionPipeline` object

        Examples:

        ```py
        >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForInpainting

        >>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
        ...     "DeepFloyd/IF-I-XL-v1.0", requires_safety_checker=False
        ... )

        >>> pipe_inpaint = AutoPipelineForInpainting.from_pipe(pipe_t2i)
        >>> image = pipe_inpaint(prompt, image=init_image, mask_image=mask_image).images[0]
        ```
        """
        original_config = dict(pipeline.config)
        original_cls_name = pipeline.__class__.__name__

        # derive the pipeline class to instantiate
        inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, original_cls_name)

        if "controlnet" in kwargs:
            if kwargs["controlnet"] is not None:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
                    inpainting_cls.__name__.replace("ControlNet", "").replace(
                        "InpaintPipeline", "ControlNetInpaintPipeline"
                    ),
                )
            else:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
                    inpainting_cls.__name__.replace("ControlNetInpaintPipeline", "InpaintPipeline"),
                )

        # define expected module and optional kwargs given the pipeline signature
        expected_modules, optional_kwargs = _get_signature_keys(inpainting_cls)

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)

        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        original_class_obj = {
            k: pipeline.components[k]
            for k, v in pipeline.components.items()
            if k in expected_modules and k not in passed_class_obj
        }

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k, v in original_config.items()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config that were not expected by original pipeline is stored as private attribute
        # we will pass them as optional arguments if they can be accepted by the pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        inpainting_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}

        # store unused config as private attribute
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
            for k, v in original_config.items()
            if k not in inpainting_kwargs
        }

        missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(inpainting_kwargs.keys())

        if len(missing_modules) > 0:
            raise ValueError(
                f"Pipeline {inpainting_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
            )

        model = inpainting_cls(**inpainting_kwargs)
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
        model.register_to_config(**unused_original_config)

        return model