Spaces:
Sleeping
Sleeping
File size: 25,236 Bytes
0aaa1f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Import utilities: Utilities related to imports and our lazy inits.
"""
import importlib.util
import operator as op
import os
import sys
from collections import OrderedDict
from itertools import chain
from types import ModuleType
from typing import Any, Union
from huggingface_hub.utils import is_jinja_available # noqa: F401
from packaging import version
from packaging.version import Version, parse
from . import logging
# The package importlib_metadata is in a different place, depending on the python version.
if sys.version_info < (3, 8):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})
USE_TF = os.environ.get("USE_TF", "AUTO").upper()
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper()
USE_SAFETENSORS = os.environ.get("USE_SAFETENSORS", "AUTO").upper()
DIFFUSERS_SLOW_IMPORT = os.environ.get("DIFFUSERS_SLOW_IMPORT", "FALSE").upper()
DIFFUSERS_SLOW_IMPORT = DIFFUSERS_SLOW_IMPORT in ENV_VARS_TRUE_VALUES
STR_OPERATION_TO_FUNC = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt}
_torch_version = "N/A"
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
_torch_available = importlib.util.find_spec("torch") is not None
if _torch_available:
try:
_torch_version = importlib_metadata.version("torch")
logger.info(f"PyTorch version {_torch_version} available.")
except importlib_metadata.PackageNotFoundError:
_torch_available = False
else:
logger.info("Disabling PyTorch because USE_TORCH is set")
_torch_available = False
_torch_xla_available = importlib.util.find_spec("torch_xla") is not None
if _torch_xla_available:
try:
_torch_xla_version = importlib_metadata.version("torch_xla")
logger.info(f"PyTorch XLA version {_torch_xla_version} available.")
except ImportError:
_torch_xla_available = False
_jax_version = "N/A"
_flax_version = "N/A"
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
_flax_available = importlib.util.find_spec("jax") is not None and importlib.util.find_spec("flax") is not None
if _flax_available:
try:
_jax_version = importlib_metadata.version("jax")
_flax_version = importlib_metadata.version("flax")
logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.")
except importlib_metadata.PackageNotFoundError:
_flax_available = False
else:
_flax_available = False
if USE_SAFETENSORS in ENV_VARS_TRUE_AND_AUTO_VALUES:
_safetensors_available = importlib.util.find_spec("safetensors") is not None
if _safetensors_available:
try:
_safetensors_version = importlib_metadata.version("safetensors")
logger.info(f"Safetensors version {_safetensors_version} available.")
except importlib_metadata.PackageNotFoundError:
_safetensors_available = False
else:
logger.info("Disabling Safetensors because USE_TF is set")
_safetensors_available = False
_transformers_available = importlib.util.find_spec("transformers") is not None
try:
_transformers_version = importlib_metadata.version("transformers")
logger.debug(f"Successfully imported transformers version {_transformers_version}")
except importlib_metadata.PackageNotFoundError:
_transformers_available = False
_inflect_available = importlib.util.find_spec("inflect") is not None
try:
_inflect_version = importlib_metadata.version("inflect")
logger.debug(f"Successfully imported inflect version {_inflect_version}")
except importlib_metadata.PackageNotFoundError:
_inflect_available = False
_unidecode_available = importlib.util.find_spec("unidecode") is not None
try:
_unidecode_version = importlib_metadata.version("unidecode")
logger.debug(f"Successfully imported unidecode version {_unidecode_version}")
except importlib_metadata.PackageNotFoundError:
_unidecode_available = False
_onnxruntime_version = "N/A"
_onnx_available = importlib.util.find_spec("onnxruntime") is not None
if _onnx_available:
candidates = (
"onnxruntime",
"onnxruntime-gpu",
"ort_nightly_gpu",
"onnxruntime-directml",
"onnxruntime-openvino",
"ort_nightly_directml",
"onnxruntime-rocm",
"onnxruntime-training",
)
_onnxruntime_version = None
# For the metadata, we have to look for both onnxruntime and onnxruntime-gpu
for pkg in candidates:
try:
_onnxruntime_version = importlib_metadata.version(pkg)
break
except importlib_metadata.PackageNotFoundError:
pass
_onnx_available = _onnxruntime_version is not None
if _onnx_available:
logger.debug(f"Successfully imported onnxruntime version {_onnxruntime_version}")
# (sayakpaul): importlib.util.find_spec("opencv-python") returns None even when it's installed.
# _opencv_available = importlib.util.find_spec("opencv-python") is not None
try:
candidates = (
"opencv-python",
"opencv-contrib-python",
"opencv-python-headless",
"opencv-contrib-python-headless",
)
_opencv_version = None
for pkg in candidates:
try:
_opencv_version = importlib_metadata.version(pkg)
break
except importlib_metadata.PackageNotFoundError:
pass
_opencv_available = _opencv_version is not None
if _opencv_available:
logger.debug(f"Successfully imported cv2 version {_opencv_version}")
except importlib_metadata.PackageNotFoundError:
_opencv_available = False
_scipy_available = importlib.util.find_spec("scipy") is not None
try:
_scipy_version = importlib_metadata.version("scipy")
logger.debug(f"Successfully imported scipy version {_scipy_version}")
except importlib_metadata.PackageNotFoundError:
_scipy_available = False
_librosa_available = importlib.util.find_spec("librosa") is not None
try:
_librosa_version = importlib_metadata.version("librosa")
logger.debug(f"Successfully imported librosa version {_librosa_version}")
except importlib_metadata.PackageNotFoundError:
_librosa_available = False
_accelerate_available = importlib.util.find_spec("accelerate") is not None
try:
_accelerate_version = importlib_metadata.version("accelerate")
logger.debug(f"Successfully imported accelerate version {_accelerate_version}")
except importlib_metadata.PackageNotFoundError:
_accelerate_available = False
_xformers_available = importlib.util.find_spec("xformers") is not None
try:
_xformers_version = importlib_metadata.version("xformers")
if _torch_available:
_torch_version = importlib_metadata.version("torch")
if version.Version(_torch_version) < version.Version("1.12"):
raise ValueError("xformers is installed in your environment and requires PyTorch >= 1.12")
logger.debug(f"Successfully imported xformers version {_xformers_version}")
except importlib_metadata.PackageNotFoundError:
_xformers_available = False
_k_diffusion_available = importlib.util.find_spec("k_diffusion") is not None
try:
_k_diffusion_version = importlib_metadata.version("k_diffusion")
logger.debug(f"Successfully imported k-diffusion version {_k_diffusion_version}")
except importlib_metadata.PackageNotFoundError:
_k_diffusion_available = False
_note_seq_available = importlib.util.find_spec("note_seq") is not None
try:
_note_seq_version = importlib_metadata.version("note_seq")
logger.debug(f"Successfully imported note-seq version {_note_seq_version}")
except importlib_metadata.PackageNotFoundError:
_note_seq_available = False
_wandb_available = importlib.util.find_spec("wandb") is not None
try:
_wandb_version = importlib_metadata.version("wandb")
logger.debug(f"Successfully imported wandb version {_wandb_version }")
except importlib_metadata.PackageNotFoundError:
_wandb_available = False
_tensorboard_available = importlib.util.find_spec("tensorboard")
try:
_tensorboard_version = importlib_metadata.version("tensorboard")
logger.debug(f"Successfully imported tensorboard version {_tensorboard_version}")
except importlib_metadata.PackageNotFoundError:
_tensorboard_available = False
_compel_available = importlib.util.find_spec("compel")
try:
_compel_version = importlib_metadata.version("compel")
logger.debug(f"Successfully imported compel version {_compel_version}")
except importlib_metadata.PackageNotFoundError:
_compel_available = False
_ftfy_available = importlib.util.find_spec("ftfy") is not None
try:
_ftfy_version = importlib_metadata.version("ftfy")
logger.debug(f"Successfully imported ftfy version {_ftfy_version}")
except importlib_metadata.PackageNotFoundError:
_ftfy_available = False
_bs4_available = importlib.util.find_spec("bs4") is not None
try:
# importlib metadata under different name
_bs4_version = importlib_metadata.version("beautifulsoup4")
logger.debug(f"Successfully imported ftfy version {_bs4_version}")
except importlib_metadata.PackageNotFoundError:
_bs4_available = False
_torchsde_available = importlib.util.find_spec("torchsde") is not None
try:
_torchsde_version = importlib_metadata.version("torchsde")
logger.debug(f"Successfully imported torchsde version {_torchsde_version}")
except importlib_metadata.PackageNotFoundError:
_torchsde_available = False
_invisible_watermark_available = importlib.util.find_spec("imwatermark") is not None
try:
_invisible_watermark_version = importlib_metadata.version("invisible-watermark")
logger.debug(f"Successfully imported invisible-watermark version {_invisible_watermark_version}")
except importlib_metadata.PackageNotFoundError:
_invisible_watermark_available = False
_peft_available = importlib.util.find_spec("peft") is not None
try:
_peft_version = importlib_metadata.version("peft")
logger.debug(f"Successfully imported peft version {_peft_version}")
except importlib_metadata.PackageNotFoundError:
_peft_available = False
def is_torch_available():
return _torch_available
def is_torch_xla_available():
return _torch_xla_available
def is_flax_available():
return _flax_available
def is_transformers_available():
return _transformers_available
def is_inflect_available():
return _inflect_available
def is_unidecode_available():
return _unidecode_available
def is_onnx_available():
return _onnx_available
def is_opencv_available():
return _opencv_available
def is_scipy_available():
return _scipy_available
def is_librosa_available():
return _librosa_available
def is_xformers_available():
return _xformers_available
def is_accelerate_available():
return _accelerate_available
def is_k_diffusion_available():
return _k_diffusion_available
def is_note_seq_available():
return _note_seq_available
def is_wandb_available():
return _wandb_available
def is_tensorboard_available():
return _tensorboard_available
def is_compel_available():
return _compel_available
def is_ftfy_available():
return _ftfy_available
def is_bs4_available():
return _bs4_available
def is_torchsde_available():
return _torchsde_available
def is_invisible_watermark_available():
return _invisible_watermark_available
def is_peft_available():
return _peft_available
# docstyle-ignore
FLAX_IMPORT_ERROR = """
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/google/flax and follow the ones that match your environment.
"""
# docstyle-ignore
INFLECT_IMPORT_ERROR = """
{0} requires the inflect library but it was not found in your environment. You can install it with pip: `pip install
inflect`
"""
# docstyle-ignore
PYTORCH_IMPORT_ERROR = """
{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
"""
# docstyle-ignore
ONNX_IMPORT_ERROR = """
{0} requires the onnxruntime library but it was not found in your environment. You can install it with pip: `pip
install onnxruntime`
"""
# docstyle-ignore
OPENCV_IMPORT_ERROR = """
{0} requires the OpenCV library but it was not found in your environment. You can install it with pip: `pip
install opencv-python`
"""
# docstyle-ignore
SCIPY_IMPORT_ERROR = """
{0} requires the scipy library but it was not found in your environment. You can install it with pip: `pip install
scipy`
"""
# docstyle-ignore
LIBROSA_IMPORT_ERROR = """
{0} requires the librosa library but it was not found in your environment. Checkout the instructions on the
installation page: https://librosa.org/doc/latest/install.html and follow the ones that match your environment.
"""
# docstyle-ignore
TRANSFORMERS_IMPORT_ERROR = """
{0} requires the transformers library but it was not found in your environment. You can install it with pip: `pip
install transformers`
"""
# docstyle-ignore
UNIDECODE_IMPORT_ERROR = """
{0} requires the unidecode library but it was not found in your environment. You can install it with pip: `pip install
Unidecode`
"""
# docstyle-ignore
K_DIFFUSION_IMPORT_ERROR = """
{0} requires the k-diffusion library but it was not found in your environment. You can install it with pip: `pip
install k-diffusion`
"""
# docstyle-ignore
NOTE_SEQ_IMPORT_ERROR = """
{0} requires the note-seq library but it was not found in your environment. You can install it with pip: `pip
install note-seq`
"""
# docstyle-ignore
WANDB_IMPORT_ERROR = """
{0} requires the wandb library but it was not found in your environment. You can install it with pip: `pip
install wandb`
"""
# docstyle-ignore
TENSORBOARD_IMPORT_ERROR = """
{0} requires the tensorboard library but it was not found in your environment. You can install it with pip: `pip
install tensorboard`
"""
# docstyle-ignore
COMPEL_IMPORT_ERROR = """
{0} requires the compel library but it was not found in your environment. You can install it with pip: `pip install compel`
"""
# docstyle-ignore
BS4_IMPORT_ERROR = """
{0} requires the Beautiful Soup library but it was not found in your environment. You can install it with pip:
`pip install beautifulsoup4`. Please note that you may need to restart your runtime after installation.
"""
# docstyle-ignore
FTFY_IMPORT_ERROR = """
{0} requires the ftfy library but it was not found in your environment. Checkout the instructions on the
installation section: https://github.com/rspeer/python-ftfy/tree/master#installing and follow the ones
that match your environment. Please note that you may need to restart your runtime after installation.
"""
# docstyle-ignore
TORCHSDE_IMPORT_ERROR = """
{0} requires the torchsde library but it was not found in your environment. You can install it with pip: `pip install torchsde`
"""
# docstyle-ignore
INVISIBLE_WATERMARK_IMPORT_ERROR = """
{0} requires the invisible-watermark library but it was not found in your environment. You can install it with pip: `pip install invisible-watermark>=0.2.0`
"""
BACKENDS_MAPPING = OrderedDict(
[
("bs4", (is_bs4_available, BS4_IMPORT_ERROR)),
("flax", (is_flax_available, FLAX_IMPORT_ERROR)),
("inflect", (is_inflect_available, INFLECT_IMPORT_ERROR)),
("onnx", (is_onnx_available, ONNX_IMPORT_ERROR)),
("opencv", (is_opencv_available, OPENCV_IMPORT_ERROR)),
("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
("transformers", (is_transformers_available, TRANSFORMERS_IMPORT_ERROR)),
("unidecode", (is_unidecode_available, UNIDECODE_IMPORT_ERROR)),
("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)),
("k_diffusion", (is_k_diffusion_available, K_DIFFUSION_IMPORT_ERROR)),
("note_seq", (is_note_seq_available, NOTE_SEQ_IMPORT_ERROR)),
("wandb", (is_wandb_available, WANDB_IMPORT_ERROR)),
("tensorboard", (is_tensorboard_available, TENSORBOARD_IMPORT_ERROR)),
("compel", (is_compel_available, COMPEL_IMPORT_ERROR)),
("ftfy", (is_ftfy_available, FTFY_IMPORT_ERROR)),
("torchsde", (is_torchsde_available, TORCHSDE_IMPORT_ERROR)),
("invisible_watermark", (is_invisible_watermark_available, INVISIBLE_WATERMARK_IMPORT_ERROR)),
]
)
def requires_backends(obj, backends):
if not isinstance(backends, (list, tuple)):
backends = [backends]
name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
checks = (BACKENDS_MAPPING[backend] for backend in backends)
failed = [msg.format(name) for available, msg in checks if not available()]
if failed:
raise ImportError("".join(failed))
if name in [
"VersatileDiffusionTextToImagePipeline",
"VersatileDiffusionPipeline",
"VersatileDiffusionDualGuidedPipeline",
"StableDiffusionImageVariationPipeline",
"UnCLIPPipeline",
] and is_transformers_version("<", "4.25.0"):
raise ImportError(
f"You need to install `transformers>=4.25` in order to use {name}: \n```\n pip install"
" --upgrade transformers \n```"
)
if name in ["StableDiffusionDepth2ImgPipeline", "StableDiffusionPix2PixZeroPipeline"] and is_transformers_version(
"<", "4.26.0"
):
raise ImportError(
f"You need to install `transformers>=4.26` in order to use {name}: \n```\n pip install"
" --upgrade transformers \n```"
)
class DummyObject(type):
"""
Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by
`requires_backend` each time a user tries to access any method of that class.
"""
def __getattr__(cls, key):
if key.startswith("_") and key not in ["_load_connected_pipes", "_is_onnx"]:
return super().__getattr__(cls, key)
requires_backends(cls, cls._backends)
# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L319
def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str):
"""
Args:
Compares a library version to some requirement using a given operation.
library_or_version (`str` or `packaging.version.Version`):
A library name or a version to check.
operation (`str`):
A string representation of an operator, such as `">"` or `"<="`.
requirement_version (`str`):
The version to compare the library version against
"""
if operation not in STR_OPERATION_TO_FUNC.keys():
raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}")
operation = STR_OPERATION_TO_FUNC[operation]
if isinstance(library_or_version, str):
library_or_version = parse(importlib_metadata.version(library_or_version))
return operation(library_or_version, parse(requirement_version))
# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L338
def is_torch_version(operation: str, version: str):
"""
Args:
Compares the current PyTorch version to a given reference with an operation.
operation (`str`):
A string representation of an operator, such as `">"` or `"<="`
version (`str`):
A string version of PyTorch
"""
return compare_versions(parse(_torch_version), operation, version)
def is_transformers_version(operation: str, version: str):
"""
Args:
Compares the current Transformers version to a given reference with an operation.
operation (`str`):
A string representation of an operator, such as `">"` or `"<="`
version (`str`):
A version string
"""
if not _transformers_available:
return False
return compare_versions(parse(_transformers_version), operation, version)
def is_accelerate_version(operation: str, version: str):
"""
Args:
Compares the current Accelerate version to a given reference with an operation.
operation (`str`):
A string representation of an operator, such as `">"` or `"<="`
version (`str`):
A version string
"""
if not _accelerate_available:
return False
return compare_versions(parse(_accelerate_version), operation, version)
def is_k_diffusion_version(operation: str, version: str):
"""
Args:
Compares the current k-diffusion version to a given reference with an operation.
operation (`str`):
A string representation of an operator, such as `">"` or `"<="`
version (`str`):
A version string
"""
if not _k_diffusion_available:
return False
return compare_versions(parse(_k_diffusion_version), operation, version)
def get_objects_from_module(module):
"""
Args:
Returns a dict of object names and values in a module, while skipping private/internal objects
module (ModuleType):
Module to extract the objects from.
Returns:
dict: Dictionary of object names and corresponding values
"""
objects = {}
for name in dir(module):
if name.startswith("_"):
continue
objects[name] = getattr(module, name)
return objects
class OptionalDependencyNotAvailable(BaseException):
"""An error indicating that an optional dependency of Diffusers was not found in the environment."""
class _LazyModule(ModuleType):
"""
Module class that surfaces all objects but only performs associated imports when the objects are requested.
"""
# Very heavily inspired by optuna.integration._IntegrationModule
# https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py
def __init__(self, name, module_file, import_structure, module_spec=None, extra_objects=None):
super().__init__(name)
self._modules = set(import_structure.keys())
self._class_to_module = {}
for key, values in import_structure.items():
for value in values:
self._class_to_module[value] = key
# Needed for autocompletion in an IDE
self.__all__ = list(import_structure.keys()) + list(chain(*import_structure.values()))
self.__file__ = module_file
self.__spec__ = module_spec
self.__path__ = [os.path.dirname(module_file)]
self._objects = {} if extra_objects is None else extra_objects
self._name = name
self._import_structure = import_structure
# Needed for autocompletion in an IDE
def __dir__(self):
result = super().__dir__()
# The elements of self.__all__ that are submodules may or may not be in the dir already, depending on whether
# they have been accessed or not. So we only add the elements of self.__all__ that are not already in the dir.
for attr in self.__all__:
if attr not in result:
result.append(attr)
return result
def __getattr__(self, name: str) -> Any:
if name in self._objects:
return self._objects[name]
if name in self._modules:
value = self._get_module(name)
elif name in self._class_to_module.keys():
module = self._get_module(self._class_to_module[name])
value = getattr(module, name)
else:
raise AttributeError(f"module {self.__name__} has no attribute {name}")
setattr(self, name, value)
return value
def _get_module(self, module_name: str):
try:
return importlib.import_module("." + module_name, self.__name__)
except Exception as e:
raise RuntimeError(
f"Failed to import {self.__name__}.{module_name} because of the following error (look up to see its"
f" traceback):\n{e}"
) from e
def __reduce__(self):
return (self.__class__, (self._name, self.__file__, self._import_structure))
|