ViPer / diffusers /pipelines /deepfloyd_if /pipeline_if_img2img_superresolution.py
miaw1419's picture
Upload 472 files
0aaa1f1 verified
raw
history blame
45.5 kB
import html
import inspect
import re
import urllib.parse as ul
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer
from ...loaders import LoraLoaderMixin
from ...models import UNet2DConditionModel
from ...schedulers import DDPMScheduler
from ...utils import (
BACKENDS_MAPPING,
PIL_INTERPOLATION,
is_accelerate_available,
is_bs4_available,
is_ftfy_available,
logging,
replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from .pipeline_output import IFPipelineOutput
from .safety_checker import IFSafetyChecker
from .watermark import IFWatermarker
if is_bs4_available():
from bs4 import BeautifulSoup
if is_ftfy_available():
import ftfy
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if_img2img.resize
def resize(images: PIL.Image.Image, img_size: int) -> PIL.Image.Image:
w, h = images.size
coef = w / h
w, h = img_size, img_size
if coef >= 1:
w = int(round(img_size / 8 * coef) * 8)
else:
h = int(round(img_size / 8 / coef) * 8)
images = images.resize((w, h), resample=PIL_INTERPOLATION["bicubic"], reducing_gap=None)
return images
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, DiffusionPipeline
>>> from diffusers.utils import pt_to_pil
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from io import BytesIO
>>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
>>> response = requests.get(url)
>>> original_image = Image.open(BytesIO(response.content)).convert("RGB")
>>> original_image = original_image.resize((768, 512))
>>> pipe = IFImg2ImgPipeline.from_pretrained(
... "DeepFloyd/IF-I-XL-v1.0",
... variant="fp16",
... torch_dtype=torch.float16,
... )
>>> pipe.enable_model_cpu_offload()
>>> prompt = "A fantasy landscape in style minecraft"
>>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)
>>> image = pipe(
... image=original_image,
... prompt_embeds=prompt_embeds,
... negative_prompt_embeds=negative_embeds,
... output_type="pt",
... ).images
>>> # save intermediate image
>>> pil_image = pt_to_pil(image)
>>> pil_image[0].save("./if_stage_I.png")
>>> super_res_1_pipe = IFImg2ImgSuperResolutionPipeline.from_pretrained(
... "DeepFloyd/IF-II-L-v1.0",
... text_encoder=None,
... variant="fp16",
... torch_dtype=torch.float16,
... )
>>> super_res_1_pipe.enable_model_cpu_offload()
>>> image = super_res_1_pipe(
... image=image,
... original_image=original_image,
... prompt_embeds=prompt_embeds,
... negative_prompt_embeds=negative_embeds,
... ).images
>>> image[0].save("./if_stage_II.png")
```
"""
class IFImg2ImgSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
tokenizer: T5Tokenizer
text_encoder: T5EncoderModel
unet: UNet2DConditionModel
scheduler: DDPMScheduler
image_noising_scheduler: DDPMScheduler
feature_extractor: Optional[CLIPImageProcessor]
safety_checker: Optional[IFSafetyChecker]
watermarker: Optional[IFWatermarker]
bad_punct_regex = re.compile(
r"["
+ "#®•©™&@·º½¾¿¡§~"
+ r"\)"
+ r"\("
+ r"\]"
+ r"\["
+ r"\}"
+ r"\{"
+ r"\|"
+ "\\"
+ r"\/"
+ r"\*"
+ r"]{1,}"
) # noqa
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor"]
model_cpu_offload_seq = "text_encoder->unet"
def __init__(
self,
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
unet: UNet2DConditionModel,
scheduler: DDPMScheduler,
image_noising_scheduler: DDPMScheduler,
safety_checker: Optional[IFSafetyChecker],
feature_extractor: Optional[CLIPImageProcessor],
watermarker: Optional[IFWatermarker],
requires_safety_checker: bool = True,
):
super().__init__()
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the IF license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
if unet.config.in_channels != 6:
logger.warn(
"It seems like you have loaded a checkpoint that shall not be used for super resolution from {unet.config._name_or_path} as it accepts {unet.config.in_channels} input channels instead of 6. Please make sure to pass a super resolution checkpoint as the `'unet'`: IFSuperResolutionPipeline.from_pretrained(unet=super_resolution_unet, ...)`."
)
self.register_modules(
tokenizer=tokenizer,
text_encoder=text_encoder,
unet=unet,
scheduler=scheduler,
image_noising_scheduler=image_noising_scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
watermarker=watermarker,
)
self.register_to_config(requires_safety_checker=requires_safety_checker)
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.remove_all_hooks
def remove_all_hooks(self):
if is_accelerate_available():
from accelerate.hooks import remove_hook_from_module
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
for model in [self.text_encoder, self.unet, self.safety_checker]:
if model is not None:
remove_hook_from_module(model, recurse=True)
self.unet_offload_hook = None
self.text_encoder_offload_hook = None
self.final_offload_hook = None
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
def _text_preprocessing(self, text, clean_caption=False):
if clean_caption and not is_bs4_available():
logger.warn(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
logger.warn("Setting `clean_caption` to False...")
clean_caption = False
if clean_caption and not is_ftfy_available():
logger.warn(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
logger.warn("Setting `clean_caption` to False...")
clean_caption = False
if not isinstance(text, (tuple, list)):
text = [text]
def process(text: str):
if clean_caption:
text = self._clean_caption(text)
text = self._clean_caption(text)
else:
text = text.lower().strip()
return text
return [process(t) for t in text]
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
def _clean_caption(self, caption):
caption = str(caption)
caption = ul.unquote_plus(caption)
caption = caption.strip().lower()
caption = re.sub("<person>", "person", caption)
# urls:
caption = re.sub(
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
caption = re.sub(
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
# html:
caption = BeautifulSoup(caption, features="html.parser").text
# @<nickname>
caption = re.sub(r"@[\w\d]+\b", "", caption)
# 31C0—31EF CJK Strokes
# 31F0—31FF Katakana Phonetic Extensions
# 3200—32FF Enclosed CJK Letters and Months
# 3300—33FF CJK Compatibility
# 3400—4DBF CJK Unified Ideographs Extension A
# 4DC0—4DFF Yijing Hexagram Symbols
# 4E00—9FFF CJK Unified Ideographs
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
#######################################################
# все виды тире / all types of dash --> "-"
caption = re.sub(
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
"-",
caption,
)
# кавычки к одному стандарту
caption = re.sub(r"[`´«»“”¨]", '"', caption)
caption = re.sub(r"[‘’]", "'", caption)
# &quot;
caption = re.sub(r"&quot;?", "", caption)
# &amp
caption = re.sub(r"&amp", "", caption)
# ip adresses:
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
# article ids:
caption = re.sub(r"\d:\d\d\s+$", "", caption)
# \n
caption = re.sub(r"\\n", " ", caption)
# "#123"
caption = re.sub(r"#\d{1,3}\b", "", caption)
# "#12345.."
caption = re.sub(r"#\d{5,}\b", "", caption)
# "123456.."
caption = re.sub(r"\b\d{6,}\b", "", caption)
# filenames:
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
#
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
# this-is-my-cute-cat / this_is_my_cute_cat
regex2 = re.compile(r"(?:\-|\_)")
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, " ", caption)
caption = ftfy.fix_text(caption)
caption = html.unescape(html.unescape(caption))
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
caption = re.sub(r"\s+", " ", caption)
caption.strip()
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
caption = re.sub(r"^\.\S+$", "", caption)
return caption.strip()
@torch.no_grad()
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
do_classifier_free_guidance: bool = True,
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
negative_prompt: Optional[Union[str, List[str]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
clean_caption: bool = False,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
whether to use classifier free guidance or not
num_images_per_prompt (`int`, *optional*, defaults to 1):
number of images that should be generated per prompt
device: (`torch.device`, *optional*):
torch device to place the resulting embeddings on
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
clean_caption (bool, defaults to `False`):
If `True`, the function will preprocess and clean the provided caption before encoding.
"""
if prompt is not None and negative_prompt is not None:
if type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
if device is None:
device = self._execution_device
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# while T5 can handle much longer input sequences than 77, the text encoder was trained with a max length of 77 for IF
max_length = 77
if prompt_embeds is None:
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {max_length} tokens: {removed_text}"
)
attention_mask = text_inputs.attention_mask.to(device)
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
if self.text_encoder is not None:
dtype = self.text_encoder.dtype
elif self.unet is not None:
dtype = self.unet.dtype
else:
dtype = None
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
attention_mask = uncond_input.attention_mask.to(device)
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
else:
negative_prompt_embeds = None
return prompt_embeds, negative_prompt_embeds
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
image, nsfw_detected, watermark_detected = self.safety_checker(
images=image,
clip_input=safety_checker_input.pixel_values.to(dtype=dtype),
)
else:
nsfw_detected = None
watermark_detected = None
if hasattr(self, "unet_offload_hook") and self.unet_offload_hook is not None:
self.unet_offload_hook.offload()
return image, nsfw_detected, watermark_detected
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
image,
original_image,
batch_size,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
):
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
# image
if isinstance(image, list):
check_image_type = image[0]
else:
check_image_type = image
if (
not isinstance(check_image_type, torch.Tensor)
and not isinstance(check_image_type, PIL.Image.Image)
and not isinstance(check_image_type, np.ndarray)
):
raise ValueError(
"`image` has to be of type `torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is"
f" {type(check_image_type)}"
)
if isinstance(image, list):
image_batch_size = len(image)
elif isinstance(image, torch.Tensor):
image_batch_size = image.shape[0]
elif isinstance(image, PIL.Image.Image):
image_batch_size = 1
elif isinstance(image, np.ndarray):
image_batch_size = image.shape[0]
else:
assert False
if batch_size != image_batch_size:
raise ValueError(f"image batch size: {image_batch_size} must be same as prompt batch size {batch_size}")
# original_image
if isinstance(original_image, list):
check_image_type = original_image[0]
else:
check_image_type = original_image
if (
not isinstance(check_image_type, torch.Tensor)
and not isinstance(check_image_type, PIL.Image.Image)
and not isinstance(check_image_type, np.ndarray)
):
raise ValueError(
"`original_image` has to be of type `torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is"
f" {type(check_image_type)}"
)
if isinstance(original_image, list):
image_batch_size = len(original_image)
elif isinstance(original_image, torch.Tensor):
image_batch_size = original_image.shape[0]
elif isinstance(original_image, PIL.Image.Image):
image_batch_size = 1
elif isinstance(original_image, np.ndarray):
image_batch_size = original_image.shape[0]
else:
assert False
if batch_size != image_batch_size:
raise ValueError(
f"original_image batch size: {image_batch_size} must be same as prompt batch size {batch_size}"
)
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if_img2img.IFImg2ImgPipeline.preprocess_image with preprocess_image -> preprocess_original_image
def preprocess_original_image(self, image: PIL.Image.Image) -> torch.Tensor:
if not isinstance(image, list):
image = [image]
def numpy_to_pt(images):
if images.ndim == 3:
images = images[..., None]
images = torch.from_numpy(images.transpose(0, 3, 1, 2))
return images
if isinstance(image[0], PIL.Image.Image):
new_image = []
for image_ in image:
image_ = image_.convert("RGB")
image_ = resize(image_, self.unet.sample_size)
image_ = np.array(image_)
image_ = image_.astype(np.float32)
image_ = image_ / 127.5 - 1
new_image.append(image_)
image = new_image
image = np.stack(image, axis=0) # to np
image = numpy_to_pt(image) # to pt
elif isinstance(image[0], np.ndarray):
image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
image = numpy_to_pt(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
return image
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if_superresolution.IFSuperResolutionPipeline.preprocess_image
def preprocess_image(self, image: PIL.Image.Image, num_images_per_prompt, device) -> torch.Tensor:
if not isinstance(image, torch.Tensor) and not isinstance(image, list):
image = [image]
if isinstance(image[0], PIL.Image.Image):
image = [np.array(i).astype(np.float32) / 127.5 - 1.0 for i in image]
image = np.stack(image, axis=0) # to np
image = torch.from_numpy(image.transpose(0, 3, 1, 2))
elif isinstance(image[0], np.ndarray):
image = np.stack(image, axis=0) # to np
if image.ndim == 5:
image = image[0]
image = torch.from_numpy(image.transpose(0, 3, 1, 2))
elif isinstance(image, list) and isinstance(image[0], torch.Tensor):
dims = image[0].ndim
if dims == 3:
image = torch.stack(image, dim=0)
elif dims == 4:
image = torch.concat(image, dim=0)
else:
raise ValueError(f"Image must have 3 or 4 dimensions, instead got {dims}")
image = image.to(device=device, dtype=self.unet.dtype)
image = image.repeat_interleave(num_images_per_prompt, dim=0)
return image
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if_img2img.IFImg2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if_img2img.IFImg2ImgPipeline.prepare_intermediate_images
def prepare_intermediate_images(
self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None
):
_, channels, height, width = image.shape
batch_size = batch_size * num_images_per_prompt
shape = (batch_size, channels, height, width)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
image = image.repeat_interleave(num_images_per_prompt, dim=0)
image = self.scheduler.add_noise(image, noise, timestep)
return image
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
image: Union[PIL.Image.Image, np.ndarray, torch.FloatTensor],
original_image: Union[
PIL.Image.Image, torch.Tensor, np.ndarray, List[PIL.Image.Image], List[torch.Tensor], List[np.ndarray]
] = None,
strength: float = 0.8,
prompt: Union[str, List[str]] = None,
num_inference_steps: int = 50,
timesteps: List[int] = None,
guidance_scale: float = 4.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
noise_level: int = 250,
clean_caption: bool = True,
):
"""
Function invoked when calling the pipeline for generation.
Args:
image (`torch.FloatTensor` or `PIL.Image.Image`):
`Image`, or tensor representing an image batch, that will be used as the starting point for the
process.
original_image (`torch.FloatTensor` or `PIL.Image.Image`):
The original image that `image` was varied from.
strength (`float`, *optional*, defaults to 0.8):
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
be maximum and the denoising process will run for the full number of iterations specified in
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
timesteps are used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
noise_level (`int`, *optional*, defaults to 250):
The amount of noise to add to the upscaled image. Must be in the range `[0, 1000)`
clean_caption (`bool`, *optional*, defaults to `True`):
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
be installed. If the dependencies are not installed, the embeddings will be created from the raw
prompt.
Examples:
Returns:
[`~pipelines.stable_diffusion.IFPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.IFPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When
returning a tuple, the first element is a list with the generated images, and the second element is a list
of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw)
or watermarked content, according to the `safety_checker`.
"""
# 1. Check inputs. Raise error if not correct
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
self.check_inputs(
prompt,
image,
original_image,
batch_size,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
)
# 2. Define call parameters
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
device = self._execution_device
# 3. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
do_classifier_free_guidance,
num_images_per_prompt=num_images_per_prompt,
device=device,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
clean_caption=clean_caption,
)
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
dtype = prompt_embeds.dtype
# 4. Prepare timesteps
if timesteps is not None:
self.scheduler.set_timesteps(timesteps=timesteps, device=device)
timesteps = self.scheduler.timesteps
num_inference_steps = len(timesteps)
else:
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
# 5. prepare original image
original_image = self.preprocess_original_image(original_image)
original_image = original_image.to(device=device, dtype=dtype)
# 6. Prepare intermediate images
noise_timestep = timesteps[0:1]
noise_timestep = noise_timestep.repeat(batch_size * num_images_per_prompt)
intermediate_images = self.prepare_intermediate_images(
original_image,
noise_timestep,
batch_size,
num_images_per_prompt,
dtype,
device,
generator,
)
# 7. Prepare upscaled image and noise level
_, _, height, width = original_image.shape
image = self.preprocess_image(image, num_images_per_prompt, device)
upscaled = F.interpolate(image, (height, width), mode="bilinear", align_corners=True)
noise_level = torch.tensor([noise_level] * upscaled.shape[0], device=upscaled.device)
noise = randn_tensor(upscaled.shape, generator=generator, device=upscaled.device, dtype=upscaled.dtype)
upscaled = self.image_noising_scheduler.add_noise(upscaled, noise, timesteps=noise_level)
if do_classifier_free_guidance:
noise_level = torch.cat([noise_level] * 2)
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# HACK: see comment in `enable_model_cpu_offload`
if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None:
self.text_encoder_offload_hook.offload()
# 9. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
model_input = torch.cat([intermediate_images, upscaled], dim=1)
model_input = torch.cat([model_input] * 2) if do_classifier_free_guidance else model_input
model_input = self.scheduler.scale_model_input(model_input, t)
# predict the noise residual
noise_pred = self.unet(
model_input,
t,
encoder_hidden_states=prompt_embeds,
class_labels=noise_level,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred_uncond, _ = noise_pred_uncond.split(model_input.shape[1] // 2, dim=1)
noise_pred_text, predicted_variance = noise_pred_text.split(model_input.shape[1] // 2, dim=1)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)
if self.scheduler.config.variance_type not in ["learned", "learned_range"]:
noise_pred, _ = noise_pred.split(intermediate_images.shape[1], dim=1)
# compute the previous noisy sample x_t -> x_t-1
intermediate_images = self.scheduler.step(
noise_pred, t, intermediate_images, **extra_step_kwargs, return_dict=False
)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, intermediate_images)
image = intermediate_images
if output_type == "pil":
# 10. Post-processing
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
# 11. Run safety checker
image, nsfw_detected, watermark_detected = self.run_safety_checker(image, device, prompt_embeds.dtype)
# 12. Convert to PIL
image = self.numpy_to_pil(image)
# 13. Apply watermark
if self.watermarker is not None:
self.watermarker.apply_watermark(image, self.unet.config.sample_size)
elif output_type == "pt":
nsfw_detected = None
watermark_detected = None
if hasattr(self, "unet_offload_hook") and self.unet_offload_hook is not None:
self.unet_offload_hook.offload()
else:
# 10. Post-processing
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
# 11. Run safety checker
image, nsfw_detected, watermark_detected = self.run_safety_checker(image, device, prompt_embeds.dtype)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, nsfw_detected, watermark_detected)
return IFPipelineOutput(images=image, nsfw_detected=nsfw_detected, watermark_detected=watermark_detected)