miaw1419's picture
Upload 472 files
0aaa1f1 verified
raw
history blame
2.12 kB
import numpy as np
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel
from ...utils import logging
logger = logging.get_logger(__name__)
class IFSafetyChecker(PreTrainedModel):
config_class = CLIPConfig
_no_split_modules = ["CLIPEncoderLayer"]
def __init__(self, config: CLIPConfig):
super().__init__(config)
self.vision_model = CLIPVisionModelWithProjection(config.vision_config)
self.p_head = nn.Linear(config.vision_config.projection_dim, 1)
self.w_head = nn.Linear(config.vision_config.projection_dim, 1)
@torch.no_grad()
def forward(self, clip_input, images, p_threshold=0.5, w_threshold=0.5):
image_embeds = self.vision_model(clip_input)[0]
nsfw_detected = self.p_head(image_embeds)
nsfw_detected = nsfw_detected.flatten()
nsfw_detected = nsfw_detected > p_threshold
nsfw_detected = nsfw_detected.tolist()
if any(nsfw_detected):
logger.warning(
"Potential NSFW content was detected in one or more images. A black image will be returned instead."
" Try again with a different prompt and/or seed."
)
for idx, nsfw_detected_ in enumerate(nsfw_detected):
if nsfw_detected_:
images[idx] = np.zeros(images[idx].shape)
watermark_detected = self.w_head(image_embeds)
watermark_detected = watermark_detected.flatten()
watermark_detected = watermark_detected > w_threshold
watermark_detected = watermark_detected.tolist()
if any(watermark_detected):
logger.warning(
"Potential watermarked content was detected in one or more images. A black image will be returned instead."
" Try again with a different prompt and/or seed."
)
for idx, watermark_detected_ in enumerate(watermark_detected):
if watermark_detected_:
images[idx] = np.zeros(images[idx].shape)
return images, nsfw_detected, watermark_detected