Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Callable, Dict, List, Optional, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
from PIL import Image | |
from ...models import UNet2DConditionModel, VQModel | |
from ...schedulers import DDPMScheduler | |
from ...utils import deprecate, logging | |
from ...utils.torch_utils import randn_tensor | |
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline | |
>>> from diffusers.utils import load_image | |
>>> import torch | |
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( | |
... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 | |
... ) | |
>>> pipe_prior.to("cuda") | |
>>> prompt = "A red cartoon frog, 4k" | |
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) | |
>>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( | |
... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 | |
... ) | |
>>> pipe.to("cuda") | |
>>> init_image = load_image( | |
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
... "/kandinsky/frog.png" | |
... ) | |
>>> image = pipe( | |
... image=init_image, | |
... image_embeds=image_emb, | |
... negative_image_embeds=zero_image_emb, | |
... height=768, | |
... width=768, | |
... num_inference_steps=100, | |
... strength=0.2, | |
... ).images | |
>>> image[0].save("red_frog.png") | |
``` | |
""" | |
# Copied from diffusers.pipelines.kandinsky2_2.pipeline_kandinsky2_2.downscale_height_and_width | |
def downscale_height_and_width(height, width, scale_factor=8): | |
new_height = height // scale_factor**2 | |
if height % scale_factor**2 != 0: | |
new_height += 1 | |
new_width = width // scale_factor**2 | |
if width % scale_factor**2 != 0: | |
new_width += 1 | |
return new_height * scale_factor, new_width * scale_factor | |
# Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_img2img.prepare_image | |
def prepare_image(pil_image, w=512, h=512): | |
pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1) | |
arr = np.array(pil_image.convert("RGB")) | |
arr = arr.astype(np.float32) / 127.5 - 1 | |
arr = np.transpose(arr, [2, 0, 1]) | |
image = torch.from_numpy(arr).unsqueeze(0) | |
return image | |
class KandinskyV22Img2ImgPipeline(DiffusionPipeline): | |
""" | |
Pipeline for image-to-image generation using Kandinsky | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
scheduler ([`DDIMScheduler`]): | |
A scheduler to be used in combination with `unet` to generate image latents. | |
unet ([`UNet2DConditionModel`]): | |
Conditional U-Net architecture to denoise the image embedding. | |
movq ([`VQModel`]): | |
MoVQ Decoder to generate the image from the latents. | |
""" | |
model_cpu_offload_seq = "unet->movq" | |
_callback_tensor_inputs = ["latents", "image_embeds", "negative_image_embeds"] | |
def __init__( | |
self, | |
unet: UNet2DConditionModel, | |
scheduler: DDPMScheduler, | |
movq: VQModel, | |
): | |
super().__init__() | |
self.register_modules( | |
unet=unet, | |
scheduler=scheduler, | |
movq=movq, | |
) | |
self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) | |
# Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_img2img.KandinskyImg2ImgPipeline.get_timesteps | |
def get_timesteps(self, num_inference_steps, strength, device): | |
# get the original timestep using init_timestep | |
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
t_start = max(num_inference_steps - init_timestep, 0) | |
timesteps = self.scheduler.timesteps[t_start:] | |
return timesteps, num_inference_steps - t_start | |
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
image = image.to(device=device, dtype=dtype) | |
batch_size = batch_size * num_images_per_prompt | |
if image.shape[1] == 4: | |
init_latents = image | |
else: | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
elif isinstance(generator, list): | |
init_latents = [ | |
self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) | |
] | |
init_latents = torch.cat(init_latents, dim=0) | |
else: | |
init_latents = self.movq.encode(image).latent_dist.sample(generator) | |
init_latents = self.movq.config.scaling_factor * init_latents | |
init_latents = torch.cat([init_latents], dim=0) | |
shape = init_latents.shape | |
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
# get latents | |
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
latents = init_latents | |
return latents | |
def guidance_scale(self): | |
return self._guidance_scale | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 | |
def num_timesteps(self): | |
return self._num_timesteps | |
def __call__( | |
self, | |
image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], | |
image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]], | |
negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], | |
height: int = 512, | |
width: int = 512, | |
num_inference_steps: int = 100, | |
guidance_scale: float = 4.0, | |
strength: float = 0.3, | |
num_images_per_prompt: int = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
**kwargs, | |
): | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): | |
The clip image embeddings for text prompt, that will be used to condition the image generation. | |
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
`Image`, or tensor representing an image batch, that will be used as the starting point for the | |
process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded | |
again. | |
strength (`float`, *optional*, defaults to 0.8): | |
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` | |
will be used as a starting point, adding more noise to it the larger the `strength`. The number of | |
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will | |
be maximum and the denoising process will run for the full number of iterations specified in | |
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. | |
negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): | |
The clip image embeddings for negative text prompt, will be used to condition the image generation. | |
height (`int`, *optional*, defaults to 512): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to 512): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 100): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 4.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` | |
(`np.array`) or `"pt"` (`torch.Tensor`). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple` | |
""" | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
device = self._execution_device | |
self._guidance_scale = guidance_scale | |
if isinstance(image_embeds, list): | |
image_embeds = torch.cat(image_embeds, dim=0) | |
batch_size = image_embeds.shape[0] | |
if isinstance(negative_image_embeds, list): | |
negative_image_embeds = torch.cat(negative_image_embeds, dim=0) | |
if self.do_classifier_free_guidance: | |
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to( | |
dtype=self.unet.dtype, device=device | |
) | |
if not isinstance(image, list): | |
image = [image] | |
if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image): | |
raise ValueError( | |
f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor" | |
) | |
image = torch.cat([prepare_image(i, width, height) for i in image], dim=0) | |
image = image.to(dtype=image_embeds.dtype, device=device) | |
latents = self.movq.encode(image)["latents"] | |
latents = latents.repeat_interleave(num_images_per_prompt, dim=0) | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) | |
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
height, width = downscale_height_and_width(height, width, self.movq_scale_factor) | |
latents = self.prepare_latents( | |
latents, latent_timestep, batch_size, num_images_per_prompt, image_embeds.dtype, device, generator | |
) | |
self._num_timesteps = len(timesteps) | |
for i, t in enumerate(self.progress_bar(timesteps)): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
added_cond_kwargs = {"image_embeds": image_embeds} | |
noise_pred = self.unet( | |
sample=latent_model_input, | |
timestep=t, | |
encoder_hidden_states=None, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
if self.do_classifier_free_guidance: | |
noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1) | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
_, variance_pred_text = variance_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) | |
if not ( | |
hasattr(self.scheduler.config, "variance_type") | |
and self.scheduler.config.variance_type in ["learned", "learned_range"] | |
): | |
noise_pred, _ = noise_pred.split(latents.shape[1], dim=1) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step( | |
noise_pred, | |
t, | |
latents, | |
generator=generator, | |
)[0] | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
image_embeds = callback_outputs.pop("image_embeds", image_embeds) | |
negative_image_embeds = callback_outputs.pop("negative_image_embeds", negative_image_embeds) | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
if output_type not in ["pt", "np", "pil", "latent"]: | |
raise ValueError( | |
f"Only the output types `pt`, `pil` ,`np` and `latent` are supported not output_type={output_type}" | |
) | |
if not output_type == "latent": | |
# post-processing | |
image = self.movq.decode(latents, force_not_quantize=True)["sample"] | |
if output_type in ["np", "pil"]: | |
image = image * 0.5 + 0.5 | |
image = image.clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
else: | |
image = latents | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |