ViPer / diffusers /pipelines /kandinsky /pipeline_kandinsky_combined.py
miaw1419's picture
Upload 472 files
0aaa1f1 verified
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, List, Optional, Union
import PIL.Image
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionModelWithProjection,
XLMRobertaTokenizer,
)
from ...models import PriorTransformer, UNet2DConditionModel, VQModel
from ...schedulers import DDIMScheduler, DDPMScheduler, UnCLIPScheduler
from ...utils import (
replace_example_docstring,
)
from ..pipeline_utils import DiffusionPipeline
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_img2img import KandinskyImg2ImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline
from .text_encoder import MultilingualCLIP
TEXT2IMAGE_EXAMPLE_DOC_STRING = """
Examples:
```py
from diffusers import AutoPipelineForText2Image
import torch
pipe = AutoPipelineForText2Image.from_pretrained(
"kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k"
image = pipe(prompt=prompt, num_inference_steps=25).images[0]
```
"""
IMAGE2IMAGE_EXAMPLE_DOC_STRING = """
Examples:
```py
from diffusers import AutoPipelineForImage2Image
import torch
import requests
from io import BytesIO
from PIL import Image
import os
pipe = AutoPipelineForImage2Image.from_pretrained(
"kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
image = Image.open(BytesIO(response.content)).convert("RGB")
image.thumbnail((768, 768))
image = pipe(prompt=prompt, image=original_image, num_inference_steps=25).images[0]
```
"""
INPAINT_EXAMPLE_DOC_STRING = """
Examples:
```py
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image
import torch
import numpy as np
pipe = AutoPipelineForInpainting.from_pretrained(
"kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"
original_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
)
mask = np.zeros((768, 768), dtype=np.float32)
# Let's mask out an area above the cat's head
mask[:250, 250:-250] = 1
image = pipe(prompt=prompt, image=original_image, mask_image=mask, num_inference_steps=25).images[0]
```
"""
class KandinskyCombinedPipeline(DiffusionPipeline):
"""
Combined Pipeline for text-to-image generation using Kandinsky
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
text_encoder ([`MultilingualCLIP`]):
Frozen text-encoder.
tokenizer ([`XLMRobertaTokenizer`]):
Tokenizer of class
scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]):
A scheduler to be used in combination with `unet` to generate image latents.
unet ([`UNet2DConditionModel`]):
Conditional U-Net architecture to denoise the image embedding.
movq ([`VQModel`]):
MoVQ Decoder to generate the image from the latents.
prior_prior ([`PriorTransformer`]):
The canonincal unCLIP prior to approximate the image embedding from the text embedding.
prior_image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen image-encoder.
prior_text_encoder ([`CLIPTextModelWithProjection`]):
Frozen text-encoder.
prior_tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
prior_scheduler ([`UnCLIPScheduler`]):
A scheduler to be used in combination with `prior` to generate image embedding.
"""
_load_connected_pipes = True
model_cpu_offload_seq = "text_encoder->unet->movq->prior_prior->prior_image_encoder->prior_text_encoder"
def __init__(
self,
text_encoder: MultilingualCLIP,
tokenizer: XLMRobertaTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, DDPMScheduler],
movq: VQModel,
prior_prior: PriorTransformer,
prior_image_encoder: CLIPVisionModelWithProjection,
prior_text_encoder: CLIPTextModelWithProjection,
prior_tokenizer: CLIPTokenizer,
prior_scheduler: UnCLIPScheduler,
prior_image_processor: CLIPImageProcessor,
):
super().__init__()
self.register_modules(
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
movq=movq,
prior_prior=prior_prior,
prior_image_encoder=prior_image_encoder,
prior_text_encoder=prior_text_encoder,
prior_tokenizer=prior_tokenizer,
prior_scheduler=prior_scheduler,
prior_image_processor=prior_image_processor,
)
self.prior_pipe = KandinskyPriorPipeline(
prior=prior_prior,
image_encoder=prior_image_encoder,
text_encoder=prior_text_encoder,
tokenizer=prior_tokenizer,
scheduler=prior_scheduler,
image_processor=prior_image_processor,
)
self.decoder_pipe = KandinskyPipeline(
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
movq=movq,
)
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models (`unet`, `text_encoder`, `vae`, and `safety checker` state dicts) to CPU using 🤗
Accelerate, significantly reducing memory usage. Models are moved to a `torch.device('meta')` and loaded on a
GPU only when their specific submodule's `forward` method is called. Offloading happens on a submodule basis.
Memory savings are higher than using `enable_model_cpu_offload`, but performance is lower.
"""
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
def progress_bar(self, iterable=None, total=None):
self.prior_pipe.progress_bar(iterable=iterable, total=total)
self.decoder_pipe.progress_bar(iterable=iterable, total=total)
self.decoder_pipe.enable_model_cpu_offload()
def set_progress_bar_config(self, **kwargs):
self.prior_pipe.set_progress_bar_config(**kwargs)
self.decoder_pipe.set_progress_bar_config(**kwargs)
@torch.no_grad()
@replace_example_docstring(TEXT2IMAGE_EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]],
negative_prompt: Optional[Union[str, List[str]]] = None,
num_inference_steps: int = 100,
guidance_scale: float = 4.0,
num_images_per_prompt: int = 1,
height: int = 512,
width: int = 512,
prior_guidance_scale: float = 4.0,
prior_num_inference_steps: int = 25,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
return_dict: bool = True,
):
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
prior_guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
prior_num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`
"""
prior_outputs = self.prior_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=prior_num_inference_steps,
generator=generator,
latents=latents,
guidance_scale=prior_guidance_scale,
output_type="pt",
return_dict=False,
)
image_embeds = prior_outputs[0]
negative_image_embeds = prior_outputs[1]
prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt
if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0:
prompt = (image_embeds.shape[0] // len(prompt)) * prompt
outputs = self.decoder_pipe(
prompt=prompt,
image_embeds=image_embeds,
negative_image_embeds=negative_image_embeds,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale,
output_type=output_type,
callback=callback,
callback_steps=callback_steps,
return_dict=return_dict,
)
self.maybe_free_model_hooks()
return outputs
class KandinskyImg2ImgCombinedPipeline(DiffusionPipeline):
"""
Combined Pipeline for image-to-image generation using Kandinsky
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
text_encoder ([`MultilingualCLIP`]):
Frozen text-encoder.
tokenizer ([`XLMRobertaTokenizer`]):
Tokenizer of class
scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]):
A scheduler to be used in combination with `unet` to generate image latents.
unet ([`UNet2DConditionModel`]):
Conditional U-Net architecture to denoise the image embedding.
movq ([`VQModel`]):
MoVQ Decoder to generate the image from the latents.
prior_prior ([`PriorTransformer`]):
The canonincal unCLIP prior to approximate the image embedding from the text embedding.
prior_image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen image-encoder.
prior_text_encoder ([`CLIPTextModelWithProjection`]):
Frozen text-encoder.
prior_tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
prior_scheduler ([`UnCLIPScheduler`]):
A scheduler to be used in combination with `prior` to generate image embedding.
"""
_load_connected_pipes = True
model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->prior_prior->" "text_encoder->unet->movq"
def __init__(
self,
text_encoder: MultilingualCLIP,
tokenizer: XLMRobertaTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, DDPMScheduler],
movq: VQModel,
prior_prior: PriorTransformer,
prior_image_encoder: CLIPVisionModelWithProjection,
prior_text_encoder: CLIPTextModelWithProjection,
prior_tokenizer: CLIPTokenizer,
prior_scheduler: UnCLIPScheduler,
prior_image_processor: CLIPImageProcessor,
):
super().__init__()
self.register_modules(
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
movq=movq,
prior_prior=prior_prior,
prior_image_encoder=prior_image_encoder,
prior_text_encoder=prior_text_encoder,
prior_tokenizer=prior_tokenizer,
prior_scheduler=prior_scheduler,
prior_image_processor=prior_image_processor,
)
self.prior_pipe = KandinskyPriorPipeline(
prior=prior_prior,
image_encoder=prior_image_encoder,
text_encoder=prior_text_encoder,
tokenizer=prior_tokenizer,
scheduler=prior_scheduler,
image_processor=prior_image_processor,
)
self.decoder_pipe = KandinskyImg2ImgPipeline(
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
movq=movq,
)
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
Note that offloading happens on a submodule basis. Memory savings are higher than with
`enable_model_cpu_offload`, but performance is lower.
"""
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
def progress_bar(self, iterable=None, total=None):
self.prior_pipe.progress_bar(iterable=iterable, total=total)
self.decoder_pipe.progress_bar(iterable=iterable, total=total)
self.decoder_pipe.enable_model_cpu_offload()
def set_progress_bar_config(self, **kwargs):
self.prior_pipe.set_progress_bar_config(**kwargs)
self.decoder_pipe.set_progress_bar_config(**kwargs)
@torch.no_grad()
@replace_example_docstring(IMAGE2IMAGE_EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]],
image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
negative_prompt: Optional[Union[str, List[str]]] = None,
num_inference_steps: int = 100,
guidance_scale: float = 4.0,
num_images_per_prompt: int = 1,
strength: float = 0.3,
height: int = 512,
width: int = 512,
prior_guidance_scale: float = 4.0,
prior_num_inference_steps: int = 25,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
return_dict: bool = True,
):
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, or tensor representing an image batch, that will be used as the starting point for the
process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded
again.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
strength (`float`, *optional*, defaults to 0.3):
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
be maximum and the denoising process will run for the full number of iterations specified in
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
prior_guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
prior_num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`
"""
prior_outputs = self.prior_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=prior_num_inference_steps,
generator=generator,
latents=latents,
guidance_scale=prior_guidance_scale,
output_type="pt",
return_dict=False,
)
image_embeds = prior_outputs[0]
negative_image_embeds = prior_outputs[1]
prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt
image = [image] if isinstance(prompt, PIL.Image.Image) else image
if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0:
prompt = (image_embeds.shape[0] // len(prompt)) * prompt
if (
isinstance(image, (list, tuple))
and len(image) < image_embeds.shape[0]
and image_embeds.shape[0] % len(image) == 0
):
image = (image_embeds.shape[0] // len(image)) * image
outputs = self.decoder_pipe(
prompt=prompt,
image=image,
image_embeds=image_embeds,
negative_image_embeds=negative_image_embeds,
strength=strength,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale,
output_type=output_type,
callback=callback,
callback_steps=callback_steps,
return_dict=return_dict,
)
self.maybe_free_model_hooks()
return outputs
class KandinskyInpaintCombinedPipeline(DiffusionPipeline):
"""
Combined Pipeline for generation using Kandinsky
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
text_encoder ([`MultilingualCLIP`]):
Frozen text-encoder.
tokenizer ([`XLMRobertaTokenizer`]):
Tokenizer of class
scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]):
A scheduler to be used in combination with `unet` to generate image latents.
unet ([`UNet2DConditionModel`]):
Conditional U-Net architecture to denoise the image embedding.
movq ([`VQModel`]):
MoVQ Decoder to generate the image from the latents.
prior_prior ([`PriorTransformer`]):
The canonincal unCLIP prior to approximate the image embedding from the text embedding.
prior_image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen image-encoder.
prior_text_encoder ([`CLIPTextModelWithProjection`]):
Frozen text-encoder.
prior_tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
prior_scheduler ([`UnCLIPScheduler`]):
A scheduler to be used in combination with `prior` to generate image embedding.
"""
_load_connected_pipes = True
model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->prior_prior->text_encoder->unet->movq"
def __init__(
self,
text_encoder: MultilingualCLIP,
tokenizer: XLMRobertaTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, DDPMScheduler],
movq: VQModel,
prior_prior: PriorTransformer,
prior_image_encoder: CLIPVisionModelWithProjection,
prior_text_encoder: CLIPTextModelWithProjection,
prior_tokenizer: CLIPTokenizer,
prior_scheduler: UnCLIPScheduler,
prior_image_processor: CLIPImageProcessor,
):
super().__init__()
self.register_modules(
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
movq=movq,
prior_prior=prior_prior,
prior_image_encoder=prior_image_encoder,
prior_text_encoder=prior_text_encoder,
prior_tokenizer=prior_tokenizer,
prior_scheduler=prior_scheduler,
prior_image_processor=prior_image_processor,
)
self.prior_pipe = KandinskyPriorPipeline(
prior=prior_prior,
image_encoder=prior_image_encoder,
text_encoder=prior_text_encoder,
tokenizer=prior_tokenizer,
scheduler=prior_scheduler,
image_processor=prior_image_processor,
)
self.decoder_pipe = KandinskyInpaintPipeline(
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
movq=movq,
)
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
Note that offloading happens on a submodule basis. Memory savings are higher than with
`enable_model_cpu_offload`, but performance is lower.
"""
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
def progress_bar(self, iterable=None, total=None):
self.prior_pipe.progress_bar(iterable=iterable, total=total)
self.decoder_pipe.progress_bar(iterable=iterable, total=total)
self.decoder_pipe.enable_model_cpu_offload()
def set_progress_bar_config(self, **kwargs):
self.prior_pipe.set_progress_bar_config(**kwargs)
self.decoder_pipe.set_progress_bar_config(**kwargs)
@torch.no_grad()
@replace_example_docstring(INPAINT_EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]],
image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
mask_image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
negative_prompt: Optional[Union[str, List[str]]] = None,
num_inference_steps: int = 100,
guidance_scale: float = 4.0,
num_images_per_prompt: int = 1,
height: int = 512,
width: int = 512,
prior_guidance_scale: float = 4.0,
prior_num_inference_steps: int = 25,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
return_dict: bool = True,
):
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, or tensor representing an image batch, that will be used as the starting point for the
process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded
again.
mask_image (`np.array`):
Tensor representing an image batch, to mask `image`. White pixels in the mask will be repainted, while
black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single
channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3,
so the expected shape would be `(B, H, W, 1)`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
prior_guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
prior_num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`
"""
prior_outputs = self.prior_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=prior_num_inference_steps,
generator=generator,
latents=latents,
guidance_scale=prior_guidance_scale,
output_type="pt",
return_dict=False,
)
image_embeds = prior_outputs[0]
negative_image_embeds = prior_outputs[1]
prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt
image = [image] if isinstance(prompt, PIL.Image.Image) else image
mask_image = [mask_image] if isinstance(mask_image, PIL.Image.Image) else mask_image
if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0:
prompt = (image_embeds.shape[0] // len(prompt)) * prompt
if (
isinstance(image, (list, tuple))
and len(image) < image_embeds.shape[0]
and image_embeds.shape[0] % len(image) == 0
):
image = (image_embeds.shape[0] // len(image)) * image
if (
isinstance(mask_image, (list, tuple))
and len(mask_image) < image_embeds.shape[0]
and image_embeds.shape[0] % len(mask_image) == 0
):
mask_image = (image_embeds.shape[0] // len(mask_image)) * mask_image
outputs = self.decoder_pipe(
prompt=prompt,
image=image,
mask_image=mask_image,
image_embeds=image_embeds,
negative_image_embeds=negative_image_embeds,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale,
output_type=output_type,
callback=callback,
callback_steps=callback_steps,
return_dict=return_dict,
)
self.maybe_free_model_hooks()
return outputs