Spaces:
Running
on
Zero
Running
on
Zero
import inspect | |
from dataclasses import dataclass | |
from typing import Callable, List, Optional, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPTextModel, | |
CLIPTokenizer, | |
CLIPVisionModelWithProjection, | |
GPT2Tokenizer, | |
) | |
from ...image_processor import VaeImageProcessor | |
from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin | |
from ...models import AutoencoderKL | |
from ...models.lora import adjust_lora_scale_text_encoder | |
from ...schedulers import KarrasDiffusionSchedulers | |
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers | |
from ...utils.outputs import BaseOutput | |
from ...utils.torch_utils import randn_tensor | |
from ..pipeline_utils import DiffusionPipeline | |
from .modeling_text_decoder import UniDiffuserTextDecoder | |
from .modeling_uvit import UniDiffuserModel | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
# New BaseOutput child class for joint image-text output | |
class ImageTextPipelineOutput(BaseOutput): | |
""" | |
Output class for joint image-text pipelines. | |
Args: | |
images (`List[PIL.Image.Image]` or `np.ndarray`) | |
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, | |
num_channels)`. | |
text (`List[str]` or `List[List[str]]`) | |
List of generated text strings of length `batch_size` or a list of list of strings whose outer list has | |
length `batch_size`. | |
""" | |
images: Optional[Union[List[PIL.Image.Image], np.ndarray]] | |
text: Optional[Union[List[str], List[List[str]]]] | |
class UniDiffuserPipeline(DiffusionPipeline): | |
r""" | |
Pipeline for a bimodal image-text model which supports unconditional text and image generation, text-conditioned | |
image generation, image-conditioned text generation, and joint image-text generation. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. This | |
is part of the UniDiffuser image representation along with the CLIP vision encoding. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
image_encoder ([`CLIPVisionModel`]): | |
A [`~transformers.CLIPVisionModel`] to encode images as part of its image representation along with the VAE | |
latent representation. | |
image_processor ([`CLIPImageProcessor`]): | |
[`~transformers.CLIPImageProcessor`] to preprocess an image before CLIP encoding it with `image_encoder`. | |
clip_tokenizer ([`CLIPTokenizer`]): | |
A [`~transformers.CLIPTokenizer`] to tokenize the prompt before encoding it with `text_encoder`. | |
text_decoder ([`UniDiffuserTextDecoder`]): | |
Frozen text decoder. This is a GPT-style model which is used to generate text from the UniDiffuser | |
embedding. | |
text_tokenizer ([`GPT2Tokenizer`]): | |
A [`~transformers.GPT2Tokenizer`] to decode text for text generation; used along with the `text_decoder`. | |
unet ([`UniDiffuserModel`]): | |
A [U-ViT](https://github.com/baofff/U-ViT) model with UNNet-style skip connections between transformer | |
layers to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image and/or text latents. The | |
original UniDiffuser paper uses the [`DPMSolverMultistepScheduler`] scheduler. | |
""" | |
# TODO: support for moving submodules for components with enable_model_cpu_offload | |
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae->text_decoder" | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
image_encoder: CLIPVisionModelWithProjection, | |
clip_image_processor: CLIPImageProcessor, | |
clip_tokenizer: CLIPTokenizer, | |
text_decoder: UniDiffuserTextDecoder, | |
text_tokenizer: GPT2Tokenizer, | |
unet: UniDiffuserModel, | |
scheduler: KarrasDiffusionSchedulers, | |
): | |
super().__init__() | |
if text_encoder.config.hidden_size != text_decoder.prefix_inner_dim: | |
raise ValueError( | |
f"The text encoder hidden size and text decoder prefix inner dim must be the same, but" | |
f" `text_encoder.config.hidden_size`: {text_encoder.config.hidden_size} and `text_decoder.prefix_inner_dim`: {text_decoder.prefix_inner_dim}" | |
) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
image_encoder=image_encoder, | |
clip_image_processor=clip_image_processor, | |
clip_tokenizer=clip_tokenizer, | |
text_decoder=text_decoder, | |
text_tokenizer=text_tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
self.num_channels_latents = vae.config.latent_channels | |
self.text_encoder_seq_len = text_encoder.config.max_position_embeddings | |
self.text_encoder_hidden_size = text_encoder.config.hidden_size | |
self.image_encoder_projection_dim = image_encoder.config.projection_dim | |
self.unet_resolution = unet.config.sample_size | |
self.text_intermediate_dim = self.text_encoder_hidden_size | |
if self.text_decoder.prefix_hidden_dim is not None: | |
self.text_intermediate_dim = self.text_decoder.prefix_hidden_dim | |
self.mode = None | |
# TODO: handle safety checking? | |
self.safety_checker = None | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing | |
def enable_vae_slicing(self): | |
r""" | |
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.vae.enable_slicing() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing | |
def disable_vae_slicing(self): | |
r""" | |
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_slicing() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling | |
def enable_vae_tiling(self): | |
r""" | |
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
processing larger images. | |
""" | |
self.vae.enable_tiling() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling | |
def disable_vae_tiling(self): | |
r""" | |
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_tiling() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def _infer_mode(self, prompt, prompt_embeds, image, latents, prompt_latents, vae_latents, clip_latents): | |
r""" | |
Infer the generation task ('mode') from the inputs to `__call__`. If the mode has been manually set, the set | |
mode will be used. | |
""" | |
prompt_available = (prompt is not None) or (prompt_embeds is not None) | |
image_available = image is not None | |
input_available = prompt_available or image_available | |
prompt_latents_available = prompt_latents is not None | |
vae_latents_available = vae_latents is not None | |
clip_latents_available = clip_latents is not None | |
full_latents_available = latents is not None | |
image_latents_available = vae_latents_available and clip_latents_available | |
all_indv_latents_available = prompt_latents_available and image_latents_available | |
if self.mode is not None: | |
# Preferentially use the mode set by the user | |
mode = self.mode | |
elif prompt_available: | |
mode = "text2img" | |
elif image_available: | |
mode = "img2text" | |
else: | |
# Neither prompt nor image supplied, infer based on availability of latents | |
if full_latents_available or all_indv_latents_available: | |
mode = "joint" | |
elif prompt_latents_available: | |
mode = "text" | |
elif image_latents_available: | |
mode = "img" | |
else: | |
# No inputs or latents available | |
mode = "joint" | |
# Give warnings for ambiguous cases | |
if self.mode is None and prompt_available and image_available: | |
logger.warning( | |
f"You have supplied both a text prompt and image to the pipeline and mode has not been set manually," | |
f" defaulting to mode '{mode}'." | |
) | |
if self.mode is None and not input_available: | |
if vae_latents_available != clip_latents_available: | |
# Exactly one of vae_latents and clip_latents is supplied | |
logger.warning( | |
f"You have supplied exactly one of `vae_latents` and `clip_latents`, whereas either both or none" | |
f" are expected to be supplied. Defaulting to mode '{mode}'." | |
) | |
elif not prompt_latents_available and not vae_latents_available and not clip_latents_available: | |
# No inputs or latents supplied | |
logger.warning( | |
f"No inputs or latents have been supplied, and mode has not been manually set," | |
f" defaulting to mode '{mode}'." | |
) | |
return mode | |
# Functions to manually set the mode | |
def set_text_mode(self): | |
r"""Manually set the generation mode to unconditional ("marginal") text generation.""" | |
self.mode = "text" | |
def set_image_mode(self): | |
r"""Manually set the generation mode to unconditional ("marginal") image generation.""" | |
self.mode = "img" | |
def set_text_to_image_mode(self): | |
r"""Manually set the generation mode to text-conditioned image generation.""" | |
self.mode = "text2img" | |
def set_image_to_text_mode(self): | |
r"""Manually set the generation mode to image-conditioned text generation.""" | |
self.mode = "img2text" | |
def set_joint_mode(self): | |
r"""Manually set the generation mode to unconditional joint image-text generation.""" | |
self.mode = "joint" | |
def reset_mode(self): | |
r"""Removes a manually set mode; after calling this, the pipeline will infer the mode from inputs.""" | |
self.mode = None | |
def _infer_batch_size( | |
self, | |
mode, | |
prompt, | |
prompt_embeds, | |
image, | |
num_images_per_prompt, | |
num_prompts_per_image, | |
latents, | |
prompt_latents, | |
vae_latents, | |
clip_latents, | |
): | |
r"""Infers the batch size and multiplier depending on mode and supplied arguments to `__call__`.""" | |
if num_images_per_prompt is None: | |
num_images_per_prompt = 1 | |
if num_prompts_per_image is None: | |
num_prompts_per_image = 1 | |
assert num_images_per_prompt > 0, "num_images_per_prompt must be a positive integer" | |
assert num_prompts_per_image > 0, "num_prompts_per_image must be a positive integer" | |
if mode in ["text2img"]: | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
# Either prompt or prompt_embeds must be present for text2img. | |
batch_size = prompt_embeds.shape[0] | |
multiplier = num_images_per_prompt | |
elif mode in ["img2text"]: | |
if isinstance(image, PIL.Image.Image): | |
batch_size = 1 | |
else: | |
# Image must be available and type either PIL.Image.Image or torch.FloatTensor. | |
# Not currently supporting something like image_embeds. | |
batch_size = image.shape[0] | |
multiplier = num_prompts_per_image | |
elif mode in ["img"]: | |
if vae_latents is not None: | |
batch_size = vae_latents.shape[0] | |
elif clip_latents is not None: | |
batch_size = clip_latents.shape[0] | |
else: | |
batch_size = 1 | |
multiplier = num_images_per_prompt | |
elif mode in ["text"]: | |
if prompt_latents is not None: | |
batch_size = prompt_latents.shape[0] | |
else: | |
batch_size = 1 | |
multiplier = num_prompts_per_image | |
elif mode in ["joint"]: | |
if latents is not None: | |
batch_size = latents.shape[0] | |
elif prompt_latents is not None: | |
batch_size = prompt_latents.shape[0] | |
elif vae_latents is not None: | |
batch_size = vae_latents.shape[0] | |
elif clip_latents is not None: | |
batch_size = clip_latents.shape[0] | |
else: | |
batch_size = 1 | |
if num_images_per_prompt == num_prompts_per_image: | |
multiplier = num_images_per_prompt | |
else: | |
multiplier = min(num_images_per_prompt, num_prompts_per_image) | |
logger.warning( | |
f"You are using mode `{mode}` and `num_images_per_prompt`: {num_images_per_prompt} and" | |
f" num_prompts_per_image: {num_prompts_per_image} are not equal. Using batch size equal to" | |
f" `min(num_images_per_prompt, num_prompts_per_image) = {batch_size}." | |
) | |
return batch_size, multiplier | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
**kwargs, | |
): | |
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." | |
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) | |
prompt_embeds_tuple = self.encode_prompt( | |
prompt=prompt, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=lora_scale, | |
**kwargs, | |
) | |
# concatenate for backwards comp | |
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) | |
return prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with self.tokenizer->self.clip_tokenizer | |
def encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
clip_skip: Optional[int] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
lora_scale (`float`, *optional*): | |
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
""" | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
if not USE_PEFT_BACKEND: | |
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
else: | |
scale_lora_layers(self.text_encoder, lora_scale) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.clip_tokenizer) | |
text_inputs = self.clip_tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.clip_tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.clip_tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.clip_tokenizer.batch_decode( | |
untruncated_ids[:, self.clip_tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.clip_tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
if clip_skip is None: | |
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
prompt_embeds = prompt_embeds[0] | |
else: | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
) | |
# Access the `hidden_states` first, that contains a tuple of | |
# all the hidden states from the encoder layers. Then index into | |
# the tuple to access the hidden states from the desired layer. | |
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
# We also need to apply the final LayerNorm here to not mess with the | |
# representations. The `last_hidden_states` that we typically use for | |
# obtaining the final prompt representations passes through the LayerNorm | |
# layer. | |
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | |
if self.text_encoder is not None: | |
prompt_embeds_dtype = self.text_encoder.dtype | |
elif self.unet is not None: | |
prompt_embeds_dtype = self.unet.dtype | |
else: | |
prompt_embeds_dtype = prompt_embeds.dtype | |
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.clip_tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.clip_tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder, lora_scale) | |
return prompt_embeds, negative_prompt_embeds | |
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_instruct_pix2pix.StableDiffusionInstructPix2PixPipeline.prepare_image_latents | |
# Add num_prompts_per_image argument, sample from autoencoder moment distribution | |
def encode_image_vae_latents( | |
self, | |
image, | |
batch_size, | |
num_prompts_per_image, | |
dtype, | |
device, | |
do_classifier_free_guidance, | |
generator=None, | |
): | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
image = image.to(device=device, dtype=dtype) | |
batch_size = batch_size * num_prompts_per_image | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if isinstance(generator, list): | |
image_latents = [ | |
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator=generator[i]) | |
* self.vae.config.scaling_factor | |
for i in range(batch_size) | |
] | |
image_latents = torch.cat(image_latents, dim=0) | |
else: | |
image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) | |
# Scale image_latents by the VAE's scaling factor | |
image_latents = image_latents * self.vae.config.scaling_factor | |
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: | |
# expand image_latents for batch_size | |
deprecation_message = ( | |
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial" | |
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | |
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | |
" your script to pass as many initial images as text prompts to suppress this warning." | |
) | |
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) | |
additional_image_per_prompt = batch_size // image_latents.shape[0] | |
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) | |
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
image_latents = torch.cat([image_latents], dim=0) | |
if do_classifier_free_guidance: | |
uncond_image_latents = torch.zeros_like(image_latents) | |
image_latents = torch.cat([image_latents, image_latents, uncond_image_latents], dim=0) | |
return image_latents | |
def encode_image_clip_latents( | |
self, | |
image, | |
batch_size, | |
num_prompts_per_image, | |
dtype, | |
device, | |
generator=None, | |
): | |
# Map image to CLIP embedding. | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
preprocessed_image = self.clip_image_processor.preprocess( | |
image, | |
return_tensors="pt", | |
) | |
preprocessed_image = preprocessed_image.to(device=device, dtype=dtype) | |
batch_size = batch_size * num_prompts_per_image | |
if isinstance(generator, list): | |
image_latents = [ | |
self.image_encoder(**preprocessed_image[i : i + 1]).image_embeds for i in range(batch_size) | |
] | |
image_latents = torch.cat(image_latents, dim=0) | |
else: | |
image_latents = self.image_encoder(**preprocessed_image).image_embeds | |
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: | |
# expand image_latents for batch_size | |
deprecation_message = ( | |
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial" | |
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | |
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | |
" your script to pass as many initial images as text prompts to suppress this warning." | |
) | |
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) | |
additional_image_per_prompt = batch_size // image_latents.shape[0] | |
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) | |
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
image_latents = torch.cat([image_latents], dim=0) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
return image_latents | |
def prepare_text_latents( | |
self, batch_size, num_images_per_prompt, seq_len, hidden_size, dtype, device, generator, latents=None | |
): | |
# Prepare latents for the CLIP embedded prompt. | |
shape = (batch_size * num_images_per_prompt, seq_len, hidden_size) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
# latents is assumed to have shace (B, L, D) | |
latents = latents.repeat(num_images_per_prompt, 1, 1) | |
latents = latents.to(device=device, dtype=dtype) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
# Rename prepare_latents -> prepare_image_vae_latents and add num_prompts_per_image argument. | |
def prepare_image_vae_latents( | |
self, | |
batch_size, | |
num_prompts_per_image, | |
num_channels_latents, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
latents=None, | |
): | |
shape = ( | |
batch_size * num_prompts_per_image, | |
num_channels_latents, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
# latents is assumed to have shape (B, C, H, W) | |
latents = latents.repeat(num_prompts_per_image, 1, 1, 1) | |
latents = latents.to(device=device, dtype=dtype) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def prepare_image_clip_latents( | |
self, batch_size, num_prompts_per_image, clip_img_dim, dtype, device, generator, latents=None | |
): | |
# Prepare latents for the CLIP embedded image. | |
shape = (batch_size * num_prompts_per_image, 1, clip_img_dim) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
# latents is assumed to have shape (B, L, D) | |
latents = latents.repeat(num_prompts_per_image, 1, 1) | |
latents = latents.to(device=device, dtype=dtype) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def decode_text_latents(self, text_latents, device): | |
output_token_list, seq_lengths = self.text_decoder.generate_captions( | |
text_latents, self.text_tokenizer.eos_token_id, device=device | |
) | |
output_list = output_token_list.cpu().numpy() | |
generated_text = [ | |
self.text_tokenizer.decode(output[: int(length)], skip_special_tokens=True) | |
for output, length in zip(output_list, seq_lengths) | |
] | |
return generated_text | |
def _split(self, x, height, width): | |
r""" | |
Splits a flattened embedding x of shape (B, C * H * W + clip_img_dim) into two tensors of shape (B, C, H, W) | |
and (B, 1, clip_img_dim) | |
""" | |
batch_size = x.shape[0] | |
latent_height = height // self.vae_scale_factor | |
latent_width = width // self.vae_scale_factor | |
img_vae_dim = self.num_channels_latents * latent_height * latent_width | |
img_vae, img_clip = x.split([img_vae_dim, self.image_encoder_projection_dim], dim=1) | |
img_vae = torch.reshape(img_vae, (batch_size, self.num_channels_latents, latent_height, latent_width)) | |
img_clip = torch.reshape(img_clip, (batch_size, 1, self.image_encoder_projection_dim)) | |
return img_vae, img_clip | |
def _combine(self, img_vae, img_clip): | |
r""" | |
Combines a latent iamge img_vae of shape (B, C, H, W) and a CLIP-embedded image img_clip of shape (B, 1, | |
clip_img_dim) into a single tensor of shape (B, C * H * W + clip_img_dim). | |
""" | |
img_vae = torch.reshape(img_vae, (img_vae.shape[0], -1)) | |
img_clip = torch.reshape(img_clip, (img_clip.shape[0], -1)) | |
return torch.concat([img_vae, img_clip], dim=-1) | |
def _split_joint(self, x, height, width): | |
r""" | |
Splits a flattened embedding x of shape (B, C * H * W + clip_img_dim + text_seq_len * text_dim] into (img_vae, | |
img_clip, text) where img_vae is of shape (B, C, H, W), img_clip is of shape (B, 1, clip_img_dim), and text is | |
of shape (B, text_seq_len, text_dim). | |
""" | |
batch_size = x.shape[0] | |
latent_height = height // self.vae_scale_factor | |
latent_width = width // self.vae_scale_factor | |
img_vae_dim = self.num_channels_latents * latent_height * latent_width | |
text_dim = self.text_encoder_seq_len * self.text_intermediate_dim | |
img_vae, img_clip, text = x.split([img_vae_dim, self.image_encoder_projection_dim, text_dim], dim=1) | |
img_vae = torch.reshape(img_vae, (batch_size, self.num_channels_latents, latent_height, latent_width)) | |
img_clip = torch.reshape(img_clip, (batch_size, 1, self.image_encoder_projection_dim)) | |
text = torch.reshape(text, (batch_size, self.text_encoder_seq_len, self.text_intermediate_dim)) | |
return img_vae, img_clip, text | |
def _combine_joint(self, img_vae, img_clip, text): | |
r""" | |
Combines a latent image img_vae of shape (B, C, H, W), a CLIP-embedded image img_clip of shape (B, L_img, | |
clip_img_dim), and a text embedding text of shape (B, L_text, text_dim) into a single embedding x of shape (B, | |
C * H * W + L_img * clip_img_dim + L_text * text_dim). | |
""" | |
img_vae = torch.reshape(img_vae, (img_vae.shape[0], -1)) | |
img_clip = torch.reshape(img_clip, (img_clip.shape[0], -1)) | |
text = torch.reshape(text, (text.shape[0], -1)) | |
return torch.concat([img_vae, img_clip, text], dim=-1) | |
def _get_noise_pred( | |
self, | |
mode, | |
latents, | |
t, | |
prompt_embeds, | |
img_vae, | |
img_clip, | |
max_timestep, | |
data_type, | |
guidance_scale, | |
generator, | |
device, | |
height, | |
width, | |
): | |
r""" | |
Gets the noise prediction using the `unet` and performs classifier-free guidance, if necessary. | |
""" | |
if mode == "joint": | |
# Joint text-image generation | |
img_vae_latents, img_clip_latents, text_latents = self._split_joint(latents, height, width) | |
img_vae_out, img_clip_out, text_out = self.unet( | |
img_vae_latents, img_clip_latents, text_latents, timestep_img=t, timestep_text=t, data_type=data_type | |
) | |
x_out = self._combine_joint(img_vae_out, img_clip_out, text_out) | |
if guidance_scale <= 1.0: | |
return x_out | |
# Classifier-free guidance | |
img_vae_T = randn_tensor(img_vae.shape, generator=generator, device=device, dtype=img_vae.dtype) | |
img_clip_T = randn_tensor(img_clip.shape, generator=generator, device=device, dtype=img_clip.dtype) | |
text_T = randn_tensor(prompt_embeds.shape, generator=generator, device=device, dtype=prompt_embeds.dtype) | |
_, _, text_out_uncond = self.unet( | |
img_vae_T, img_clip_T, text_latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type | |
) | |
img_vae_out_uncond, img_clip_out_uncond, _ = self.unet( | |
img_vae_latents, | |
img_clip_latents, | |
text_T, | |
timestep_img=t, | |
timestep_text=max_timestep, | |
data_type=data_type, | |
) | |
x_out_uncond = self._combine_joint(img_vae_out_uncond, img_clip_out_uncond, text_out_uncond) | |
return guidance_scale * x_out + (1.0 - guidance_scale) * x_out_uncond | |
elif mode == "text2img": | |
# Text-conditioned image generation | |
img_vae_latents, img_clip_latents = self._split(latents, height, width) | |
img_vae_out, img_clip_out, text_out = self.unet( | |
img_vae_latents, img_clip_latents, prompt_embeds, timestep_img=t, timestep_text=0, data_type=data_type | |
) | |
img_out = self._combine(img_vae_out, img_clip_out) | |
if guidance_scale <= 1.0: | |
return img_out | |
# Classifier-free guidance | |
text_T = randn_tensor(prompt_embeds.shape, generator=generator, device=device, dtype=prompt_embeds.dtype) | |
img_vae_out_uncond, img_clip_out_uncond, text_out_uncond = self.unet( | |
img_vae_latents, | |
img_clip_latents, | |
text_T, | |
timestep_img=t, | |
timestep_text=max_timestep, | |
data_type=data_type, | |
) | |
img_out_uncond = self._combine(img_vae_out_uncond, img_clip_out_uncond) | |
return guidance_scale * img_out + (1.0 - guidance_scale) * img_out_uncond | |
elif mode == "img2text": | |
# Image-conditioned text generation | |
img_vae_out, img_clip_out, text_out = self.unet( | |
img_vae, img_clip, latents, timestep_img=0, timestep_text=t, data_type=data_type | |
) | |
if guidance_scale <= 1.0: | |
return text_out | |
# Classifier-free guidance | |
img_vae_T = randn_tensor(img_vae.shape, generator=generator, device=device, dtype=img_vae.dtype) | |
img_clip_T = randn_tensor(img_clip.shape, generator=generator, device=device, dtype=img_clip.dtype) | |
img_vae_out_uncond, img_clip_out_uncond, text_out_uncond = self.unet( | |
img_vae_T, img_clip_T, latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type | |
) | |
return guidance_scale * text_out + (1.0 - guidance_scale) * text_out_uncond | |
elif mode == "text": | |
# Unconditional ("marginal") text generation (no CFG) | |
img_vae_out, img_clip_out, text_out = self.unet( | |
img_vae, img_clip, latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type | |
) | |
return text_out | |
elif mode == "img": | |
# Unconditional ("marginal") image generation (no CFG) | |
img_vae_latents, img_clip_latents = self._split(latents, height, width) | |
img_vae_out, img_clip_out, text_out = self.unet( | |
img_vae_latents, | |
img_clip_latents, | |
prompt_embeds, | |
timestep_img=t, | |
timestep_text=max_timestep, | |
data_type=data_type, | |
) | |
img_out = self._combine(img_vae_out, img_clip_out) | |
return img_out | |
def check_latents_shape(self, latents_name, latents, expected_shape): | |
latents_shape = latents.shape | |
expected_num_dims = len(expected_shape) + 1 # expected dimensions plus the batch dimension | |
expected_shape_str = ", ".join(str(dim) for dim in expected_shape) | |
if len(latents_shape) != expected_num_dims: | |
raise ValueError( | |
f"`{latents_name}` should have shape (batch_size, {expected_shape_str}), but the current shape" | |
f" {latents_shape} has {len(latents_shape)} dimensions." | |
) | |
for i in range(1, expected_num_dims): | |
if latents_shape[i] != expected_shape[i - 1]: | |
raise ValueError( | |
f"`{latents_name}` should have shape (batch_size, {expected_shape_str}), but the current shape" | |
f" {latents_shape} has {latents_shape[i]} != {expected_shape[i - 1]} at dimension {i}." | |
) | |
def check_inputs( | |
self, | |
mode, | |
prompt, | |
image, | |
height, | |
width, | |
callback_steps, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
latents=None, | |
prompt_latents=None, | |
vae_latents=None, | |
clip_latents=None, | |
): | |
# Check inputs before running the generative process. | |
if height % self.vae_scale_factor != 0 or width % self.vae_scale_factor != 0: | |
raise ValueError( | |
f"`height` and `width` have to be divisible by {self.vae_scale_factor} but are {height} and {width}." | |
) | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if mode == "text2img": | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
if mode == "img2text": | |
if image is None: | |
raise ValueError("`img2text` mode requires an image to be provided.") | |
# Check provided latents | |
latent_height = height // self.vae_scale_factor | |
latent_width = width // self.vae_scale_factor | |
full_latents_available = latents is not None | |
prompt_latents_available = prompt_latents is not None | |
vae_latents_available = vae_latents is not None | |
clip_latents_available = clip_latents is not None | |
if full_latents_available: | |
individual_latents_available = ( | |
prompt_latents is not None or vae_latents is not None or clip_latents is not None | |
) | |
if individual_latents_available: | |
logger.warning( | |
"You have supplied both `latents` and at least one of `prompt_latents`, `vae_latents`, and" | |
" `clip_latents`. The value of `latents` will override the value of any individually supplied latents." | |
) | |
# Check shape of full latents | |
img_vae_dim = self.num_channels_latents * latent_height * latent_width | |
text_dim = self.text_encoder_seq_len * self.text_encoder_hidden_size | |
latents_dim = img_vae_dim + self.image_encoder_projection_dim + text_dim | |
latents_expected_shape = (latents_dim,) | |
self.check_latents_shape("latents", latents, latents_expected_shape) | |
# Check individual latent shapes, if present | |
if prompt_latents_available: | |
prompt_latents_expected_shape = (self.text_encoder_seq_len, self.text_encoder_hidden_size) | |
self.check_latents_shape("prompt_latents", prompt_latents, prompt_latents_expected_shape) | |
if vae_latents_available: | |
vae_latents_expected_shape = (self.num_channels_latents, latent_height, latent_width) | |
self.check_latents_shape("vae_latents", vae_latents, vae_latents_expected_shape) | |
if clip_latents_available: | |
clip_latents_expected_shape = (1, self.image_encoder_projection_dim) | |
self.check_latents_shape("clip_latents", clip_latents, clip_latents_expected_shape) | |
if mode in ["text2img", "img"] and vae_latents_available and clip_latents_available: | |
if vae_latents.shape[0] != clip_latents.shape[0]: | |
raise ValueError( | |
f"Both `vae_latents` and `clip_latents` are supplied, but their batch dimensions are not equal:" | |
f" {vae_latents.shape[0]} != {clip_latents.shape[0]}." | |
) | |
if mode == "joint" and prompt_latents_available and vae_latents_available and clip_latents_available: | |
if prompt_latents.shape[0] != vae_latents.shape[0] or prompt_latents.shape[0] != clip_latents.shape[0]: | |
raise ValueError( | |
f"All of `prompt_latents`, `vae_latents`, and `clip_latents` are supplied, but their batch" | |
f" dimensions are not equal: {prompt_latents.shape[0]} != {vae_latents.shape[0]}" | |
f" != {clip_latents.shape[0]}." | |
) | |
def __call__( | |
self, | |
prompt: Optional[Union[str, List[str]]] = None, | |
image: Optional[Union[torch.FloatTensor, PIL.Image.Image]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
data_type: Optional[int] = 1, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 8.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
num_prompts_per_image: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_latents: Optional[torch.FloatTensor] = None, | |
vae_latents: Optional[torch.FloatTensor] = None, | |
clip_latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
Required for text-conditioned image generation (`text2img`) mode. | |
image (`torch.FloatTensor` or `PIL.Image.Image`, *optional*): | |
`Image` or tensor representing an image batch. Required for image-conditioned text generation | |
(`img2text`) mode. | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated image. | |
data_type (`int`, *optional*, defaults to 1): | |
The data type (either 0 or 1). Only used if you are loading a checkpoint which supports a data type | |
embedding; this is added for compatibility with the | |
[UniDiffuser-v1](https://huggingface.co/thu-ml/unidiffuser-v1) checkpoint. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 8.0): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). Used in | |
text-conditioned image generation (`text2img`) mode. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. Used in `text2img` (text-conditioned image generation) and | |
`img` mode. If the mode is joint and both `num_images_per_prompt` and `num_prompts_per_image` are | |
supplied, `min(num_images_per_prompt, num_prompts_per_image)` samples are generated. | |
num_prompts_per_image (`int`, *optional*, defaults to 1): | |
The number of prompts to generate per image. Used in `img2text` (image-conditioned text generation) and | |
`text` mode. If the mode is joint and both `num_images_per_prompt` and `num_prompts_per_image` are | |
supplied, `min(num_images_per_prompt, num_prompts_per_image)` samples are generated. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for joint | |
image-text generation. Can be used to tweak the same generation with different prompts. If not | |
provided, a latents tensor is generated by sampling using the supplied random `generator`. This assumes | |
a full set of VAE, CLIP, and text latents, if supplied, overrides the value of `prompt_latents`, | |
`vae_latents`, and `clip_latents`. | |
prompt_latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for text | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
vae_latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
clip_latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. Used in text-conditioned | |
image generation (`text2img`) mode. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are be generated from the `negative_prompt` input argument. Used | |
in text-conditioned image generation (`text2img`) mode. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImageTextPipelineOutput`] instead of a plain tuple. | |
callback (`Callable`, *optional*): | |
A function that calls every `callback_steps` steps during inference. The function is called with the | |
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function is called. If not specified, the callback is called at | |
every step. | |
Returns: | |
[`~pipelines.unidiffuser.ImageTextPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.unidiffuser.ImageTextPipelineOutput`] is returned, otherwise a | |
`tuple` is returned where the first element is a list with the generated images and the second element | |
is a list of generated texts. | |
""" | |
# 0. Default height and width to unet | |
height = height or self.unet_resolution * self.vae_scale_factor | |
width = width or self.unet_resolution * self.vae_scale_factor | |
# 1. Check inputs | |
# Recalculate mode for each call to the pipeline. | |
mode = self._infer_mode(prompt, prompt_embeds, image, latents, prompt_latents, vae_latents, clip_latents) | |
self.check_inputs( | |
mode, | |
prompt, | |
image, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
latents, | |
prompt_latents, | |
vae_latents, | |
clip_latents, | |
) | |
# 2. Define call parameters | |
batch_size, multiplier = self._infer_batch_size( | |
mode, | |
prompt, | |
prompt_embeds, | |
image, | |
num_images_per_prompt, | |
num_prompts_per_image, | |
latents, | |
prompt_latents, | |
vae_latents, | |
clip_latents, | |
) | |
device = self._execution_device | |
reduce_text_emb_dim = self.text_intermediate_dim < self.text_encoder_hidden_size or self.mode != "text2img" | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
# Note that this differs from the formulation in the unidiffusers paper! | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# check if scheduler is in sigmas space | |
# scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas") | |
# 3. Encode input prompt, if available; otherwise prepare text latents | |
if latents is not None: | |
# Overwrite individual latents | |
vae_latents, clip_latents, prompt_latents = self._split_joint(latents, height, width) | |
if mode in ["text2img"]: | |
# 3.1. Encode input prompt, if available | |
assert prompt is not None or prompt_embeds is not None | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt=prompt, | |
device=device, | |
num_images_per_prompt=multiplier, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
) | |
# if do_classifier_free_guidance: | |
# prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
else: | |
# 3.2. Prepare text latent variables, if input not available | |
prompt_embeds = self.prepare_text_latents( | |
batch_size=batch_size, | |
num_images_per_prompt=multiplier, | |
seq_len=self.text_encoder_seq_len, | |
hidden_size=self.text_encoder_hidden_size, | |
dtype=self.text_encoder.dtype, # Should work with both full precision and mixed precision | |
device=device, | |
generator=generator, | |
latents=prompt_latents, | |
) | |
if reduce_text_emb_dim: | |
prompt_embeds = self.text_decoder.encode(prompt_embeds) | |
# 4. Encode image, if available; otherwise prepare image latents | |
if mode in ["img2text"]: | |
# 4.1. Encode images, if available | |
assert image is not None, "`img2text` requires a conditioning image" | |
# Encode image using VAE | |
image_vae = self.image_processor.preprocess(image) | |
height, width = image_vae.shape[-2:] | |
image_vae_latents = self.encode_image_vae_latents( | |
image=image_vae, | |
batch_size=batch_size, | |
num_prompts_per_image=multiplier, | |
dtype=prompt_embeds.dtype, | |
device=device, | |
do_classifier_free_guidance=False, # Copied from InstructPix2Pix, don't use their version of CFG | |
generator=generator, | |
) | |
# Encode image using CLIP | |
image_clip_latents = self.encode_image_clip_latents( | |
image=image, | |
batch_size=batch_size, | |
num_prompts_per_image=multiplier, | |
dtype=prompt_embeds.dtype, | |
device=device, | |
generator=generator, | |
) | |
# (batch_size, clip_hidden_size) => (batch_size, 1, clip_hidden_size) | |
image_clip_latents = image_clip_latents.unsqueeze(1) | |
else: | |
# 4.2. Prepare image latent variables, if input not available | |
# Prepare image VAE latents in latent space | |
image_vae_latents = self.prepare_image_vae_latents( | |
batch_size=batch_size, | |
num_prompts_per_image=multiplier, | |
num_channels_latents=self.num_channels_latents, | |
height=height, | |
width=width, | |
dtype=prompt_embeds.dtype, | |
device=device, | |
generator=generator, | |
latents=vae_latents, | |
) | |
# Prepare image CLIP latents | |
image_clip_latents = self.prepare_image_clip_latents( | |
batch_size=batch_size, | |
num_prompts_per_image=multiplier, | |
clip_img_dim=self.image_encoder_projection_dim, | |
dtype=prompt_embeds.dtype, | |
device=device, | |
generator=generator, | |
latents=clip_latents, | |
) | |
# 5. Set timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# max_timestep = timesteps[0] | |
max_timestep = self.scheduler.config.num_train_timesteps | |
# 6. Prepare latent variables | |
if mode == "joint": | |
latents = self._combine_joint(image_vae_latents, image_clip_latents, prompt_embeds) | |
elif mode in ["text2img", "img"]: | |
latents = self._combine(image_vae_latents, image_clip_latents) | |
elif mode in ["img2text", "text"]: | |
latents = prompt_embeds | |
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
logger.debug(f"Scheduler extra step kwargs: {extra_step_kwargs}") | |
# 8. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# predict the noise residual | |
# Also applies classifier-free guidance as described in the UniDiffuser paper | |
noise_pred = self._get_noise_pred( | |
mode, | |
latents, | |
t, | |
prompt_embeds, | |
image_vae_latents, | |
image_clip_latents, | |
max_timestep, | |
data_type, | |
guidance_scale, | |
generator, | |
device, | |
height, | |
width, | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
# 9. Post-processing | |
image = None | |
text = None | |
if mode == "joint": | |
image_vae_latents, image_clip_latents, text_latents = self._split_joint(latents, height, width) | |
if not output_type == "latent": | |
# Map latent VAE image back to pixel space | |
image = self.vae.decode(image_vae_latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
else: | |
image = image_vae_latents | |
text = self.decode_text_latents(text_latents, device) | |
elif mode in ["text2img", "img"]: | |
image_vae_latents, image_clip_latents = self._split(latents, height, width) | |
if not output_type == "latent": | |
# Map latent VAE image back to pixel space | |
image = self.vae.decode(image_vae_latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
else: | |
image = image_vae_latents | |
elif mode in ["img2text", "text"]: | |
text_latents = latents | |
text = self.decode_text_latents(text_latents, device) | |
self.maybe_free_model_hooks() | |
# 10. Postprocess the image, if necessary | |
if image is not None: | |
do_denormalize = [True] * image.shape[0] | |
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
if not return_dict: | |
return (image, text) | |
return ImageTextPipelineOutput(images=image, text=text) | |