Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -17,6 +17,8 @@ MODEL_ONNX_FNAME = "ESG_classifier.onnx"
|
|
17 |
MODEL_SENTIMENT_ANALYSIS = "ProsusAI/finbert"
|
18 |
MODEL_SUMMARY_PEGASUS = "oMateos2020/pegasus-newsroom-cnn_full-adafactor-bs6"
|
19 |
|
|
|
|
|
20 |
#API_HF_SENTIMENT_URL = "https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-sentiment"
|
21 |
|
22 |
def _inference_ner_spancat(text, summary, penalty=0.5, normalise=True, limit_outputs=10):
|
@@ -51,32 +53,24 @@ def _inference_sentiment_model_pipeline(text):
|
|
51 |
# response = requests.post(API_HF_SENTIMENT_URL , headers={"Authorization": os.environ['hf_api_token']}, json=payload)
|
52 |
# return response.json()
|
53 |
|
54 |
-
def
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
#and not token.like_num
|
73 |
-
and not token.pos_ == "CONJ"):
|
74 |
-
|
75 |
-
list_word.append(token.lemma_)
|
76 |
-
|
77 |
-
return convert_listwords_text(list_words=list_word)
|
78 |
-
else:
|
79 |
-
return -1
|
80 |
|
81 |
def sigmoid(x):
|
82 |
return 1 / (1 + np.exp(-x))
|
@@ -103,7 +97,7 @@ def is_in_archive(url):
|
|
103 |
|
104 |
def _inference_classifier(text):
|
105 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_TRANSFORMER_BASED)
|
106 |
-
inputs = tokenizer(
|
107 |
ort_session = onnxruntime.InferenceSession(MODEL_ONNX_FNAME)
|
108 |
onnx_model = onnx.load(MODEL_ONNX_FNAME)
|
109 |
onnx.checker.check_model(onnx_model)
|
@@ -113,20 +107,27 @@ def _inference_classifier(text):
|
|
113 |
|
114 |
return sigmoid(ort_outs[0])[0]
|
115 |
|
116 |
-
def inference(
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
#sentiment = _inference_sentiment_model_via_api_query({"inputs": extracted['content']})
|
125 |
-
sentiment = _inference_sentiment_model_pipeline(
|
126 |
-
summary = _inference_summary_model_pipeline(
|
127 |
-
ner_labels = _inference_ner_spancat(
|
128 |
|
129 |
-
return ner_labels, {'E':float(prob_outs[0]),"S":float(prob_outs[1]),"G":float(prob_outs[2])},{sentiment['label']:float(sentiment['score'])},"**Summary:**\n\n" + summary
|
130 |
|
131 |
title = "ESG API Demo"
|
132 |
description = """This is a demonstration of the full ESG pipeline backend where given a URL (english, news) the news contents are extracted, using extractnet, and fed to three models:
|
@@ -141,14 +142,25 @@ API input parameters:
|
|
141 |
- `limit_companies`: integer. Number of found relevant companies to report.
|
142 |
|
143 |
"""
|
144 |
-
examples = [['https://www.bbc.com/news/uk-62732447',False,5],
|
145 |
-
['https://www.bbc.com/news/business-62747401',False,5],
|
146 |
-
['https://www.bbc.com/news/technology-62744858',False,5],
|
147 |
-
['https://www.bbc.com/news/science-environment-62758811',False,5],
|
148 |
-
['https://www.theguardian.com/business/2022/sep/02/nord-stream-1-gazprom-announces-indefinite-shutdown-of-pipeline',False,5],
|
149 |
-
['https://www.bbc.com/news/world-europe-62766867',False,5],
|
150 |
-
['https://www.bbc.com/news/business-62524031',False,5],
|
151 |
-
['https://www.bbc.com/news/business-62728621',False,5],
|
152 |
-
['https://www.bbc.com/news/science-environment-62680423',False,5]]
|
153 |
-
demo = gr.Interface(fn=inference,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
demo.launch()
|
|
|
17 |
MODEL_SENTIMENT_ANALYSIS = "ProsusAI/finbert"
|
18 |
MODEL_SUMMARY_PEGASUS = "oMateos2020/pegasus-newsroom-cnn_full-adafactor-bs6"
|
19 |
|
20 |
+
|
21 |
+
|
22 |
#API_HF_SENTIMENT_URL = "https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-sentiment"
|
23 |
|
24 |
def _inference_ner_spancat(text, summary, penalty=0.5, normalise=True, limit_outputs=10):
|
|
|
53 |
# response = requests.post(API_HF_SENTIMENT_URL , headers={"Authorization": os.environ['hf_api_token']}, json=payload)
|
54 |
# return response.json()
|
55 |
|
56 |
+
def _lematise_text(text):
|
57 |
+
nlp = spacy.load("en_core_web_sm", disable=['ner'])
|
58 |
+
text_out = []
|
59 |
+
for doc in nlp.pipe(text): #see https://spacy.io/models#design
|
60 |
+
new_text = ""
|
61 |
+
for token in doc:
|
62 |
+
if (not token.is_punct
|
63 |
+
and not token.is_stop
|
64 |
+
and not token.like_url
|
65 |
+
and not token.is_space
|
66 |
+
and not token.like_email
|
67 |
+
#and not token.like_num
|
68 |
+
and not token.pos_ == "CONJ"):
|
69 |
+
|
70 |
+
new_text = new_text + " " + token.lemma_
|
71 |
+
|
72 |
+
text_out.append( new_text )
|
73 |
+
return text_out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
def sigmoid(x):
|
76 |
return 1 / (1 + np.exp(-x))
|
|
|
97 |
|
98 |
def _inference_classifier(text):
|
99 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_TRANSFORMER_BASED)
|
100 |
+
inputs = tokenizer(_lematise_text(text), return_tensors="np", padding="max_length", truncation=True) #this assumes head-only!
|
101 |
ort_session = onnxruntime.InferenceSession(MODEL_ONNX_FNAME)
|
102 |
onnx_model = onnx.load(MODEL_ONNX_FNAME)
|
103 |
onnx.checker.check_model(onnx_model)
|
|
|
107 |
|
108 |
return sigmoid(ort_outs[0])[0]
|
109 |
|
110 |
+
def inference(input_batch,isurl,use_archive,limit_companies=10):
|
111 |
+
input_batch_content = []
|
112 |
+
if isurl:
|
113 |
+
for url in input_batch:
|
114 |
+
if use_archive:
|
115 |
+
archive = is_in_archive(url)
|
116 |
+
if archive['archived']:
|
117 |
+
url = archive['url']
|
118 |
+
#Extract the data from url
|
119 |
+
extracted = Extractor().extract(requests.get(url).text)
|
120 |
+
input_batch_content.append(extracted['content'])
|
121 |
+
else:
|
122 |
+
input_batch_content = input_batch
|
123 |
+
|
124 |
+
prob_outs = _inference_classifier(input_batch_content)
|
125 |
#sentiment = _inference_sentiment_model_via_api_query({"inputs": extracted['content']})
|
126 |
+
#sentiment = _inference_sentiment_model_pipeline(input_batch_content )[0]
|
127 |
+
#summary = _inference_summary_model_pipeline(input_batch_content )[0]['generated_text']
|
128 |
+
#ner_labels = _inference_ner_spancat(input_batch_content ,summary, penalty = 0.8, limit_outputs=limit_companies)
|
129 |
|
130 |
+
return prob_outs #ner_labels, {'E':float(prob_outs[0]),"S":float(prob_outs[1]),"G":float(prob_outs[2])},{sentiment['label']:float(sentiment['score'])},"**Summary:**\n\n" + summary
|
131 |
|
132 |
title = "ESG API Demo"
|
133 |
description = """This is a demonstration of the full ESG pipeline backend where given a URL (english, news) the news contents are extracted, using extractnet, and fed to three models:
|
|
|
142 |
- `limit_companies`: integer. Number of found relevant companies to report.
|
143 |
|
144 |
"""
|
145 |
+
#examples = [['https://www.bbc.com/news/uk-62732447',False,5],
|
146 |
+
# ['https://www.bbc.com/news/business-62747401',False,5],
|
147 |
+
# ['https://www.bbc.com/news/technology-62744858',False,5],
|
148 |
+
# ['https://www.bbc.com/news/science-environment-62758811',False,5],
|
149 |
+
# ['https://www.theguardian.com/business/2022/sep/02/nord-stream-1-gazprom-announces-indefinite-shutdown-of-pipeline',False,5],
|
150 |
+
# ['https://www.bbc.com/news/world-europe-62766867',False,5],
|
151 |
+
# ['https://www.bbc.com/news/business-62524031',False,5],
|
152 |
+
# ['https://www.bbc.com/news/business-62728621',False,5],
|
153 |
+
# ['https://www.bbc.com/news/science-environment-62680423',False,5]]
|
154 |
+
demo = gr.Interface(fn=inference,
|
155 |
+
inputs=[gr.Dataframe(label='input batch', col_count=1, datatype='str', type='array', wrap=True),
|
156 |
+
gr.Dropdown(label='data type', choices=['text','url'], type='index'),
|
157 |
+
gr.Checkbox(label='if url parse cached in archive.org'),
|
158 |
+
gr.Slider(minimum=1, maximum=10, step=1, label='Limit NER output')],
|
159 |
+
outputs=[gr.Dataframe(label='output raw', col_count=1, datatype='number', type='array', wrap=True)],
|
160 |
+
#gr.Label(label='Company'),
|
161 |
+
#gr.Label(label='ESG'),
|
162 |
+
#gr.Label(label='Sentiment'),
|
163 |
+
#gr.Markdown()],
|
164 |
+
title=title,
|
165 |
+
description=description)#, examples=examples)
|
166 |
demo.launch()
|