Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,7 @@ import itertools
|
|
15 |
MODEL_TRANSFORMER_BASED = "distilbert-base-uncased"
|
16 |
MODEL_ONNX_FNAME = "ESG_classifier.onnx"
|
17 |
MODEL_SENTIMENT_ANALYSIS = "ProsusAI/finbert"
|
18 |
-
MODEL_SUMMARY_PEGASUS = "oMateos2020/pegasus-newsroom-cnn_full-adafactor-bs6"
|
19 |
|
20 |
|
21 |
|
@@ -40,9 +40,9 @@ def _inference_ner_spancat(text, summary, penalty=0.5, normalise=True, limit_out
|
|
40 |
|
41 |
return dict(itertools.islice(sorted(comp_raw_text.items(), key=lambda x: x[1], reverse=True), limit_outputs))
|
42 |
|
43 |
-
def _inference_summary_model_pipeline(text):
|
44 |
-
pipe = pipeline("text2text-generation", model=MODEL_SUMMARY_PEGASUS)
|
45 |
-
return pipe(text,truncation='longest_first')
|
46 |
|
47 |
def _inference_sentiment_model_pipeline(text):
|
48 |
tokenizer_kwargs = {'padding':True,'truncation':True,'max_length':512}#,'return_tensors':'pt'}
|
@@ -105,7 +105,7 @@ def _inference_classifier(text):
|
|
105 |
# compute ONNX Runtime output prediction
|
106 |
ort_outs = ort_session.run(None, input_feed=dict(inputs))
|
107 |
|
108 |
-
return sigmoid(ort_outs[0])
|
109 |
|
110 |
def inference(input_batch,isurl,use_archive,limit_companies=10):
|
111 |
input_batch_content = []
|
|
|
15 |
MODEL_TRANSFORMER_BASED = "distilbert-base-uncased"
|
16 |
MODEL_ONNX_FNAME = "ESG_classifier.onnx"
|
17 |
MODEL_SENTIMENT_ANALYSIS = "ProsusAI/finbert"
|
18 |
+
#MODEL_SUMMARY_PEGASUS = "oMateos2020/pegasus-newsroom-cnn_full-adafactor-bs6"
|
19 |
|
20 |
|
21 |
|
|
|
40 |
|
41 |
return dict(itertools.islice(sorted(comp_raw_text.items(), key=lambda x: x[1], reverse=True), limit_outputs))
|
42 |
|
43 |
+
#def _inference_summary_model_pipeline(text):
|
44 |
+
# pipe = pipeline("text2text-generation", model=MODEL_SUMMARY_PEGASUS)
|
45 |
+
# return pipe(text,truncation='longest_first')
|
46 |
|
47 |
def _inference_sentiment_model_pipeline(text):
|
48 |
tokenizer_kwargs = {'padding':True,'truncation':True,'max_length':512}#,'return_tensors':'pt'}
|
|
|
105 |
# compute ONNX Runtime output prediction
|
106 |
ort_outs = ort_session.run(None, input_feed=dict(inputs))
|
107 |
|
108 |
+
return sigmoid(ort_outs[0])
|
109 |
|
110 |
def inference(input_batch,isurl,use_archive,limit_companies=10):
|
111 |
input_batch_content = []
|