rdose commited on
Commit
565c377
·
1 Parent(s): 4ac7c2d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -2
app.py CHANGED
@@ -1,9 +1,20 @@
 
 
 
1
  import numpy as np
2
  import onnxruntime
3
  import onnx
4
  import gradio as gr
5
  import requests
6
  import json
 
 
 
 
 
 
 
 
7
  from extractnet import Extractor
8
  import math
9
  from transformers import AutoTokenizer
@@ -275,8 +286,15 @@ def inference(input_batch,isurl,use_archive,limit_companies=10):
275
  if archive['archived']:
276
  url = archive['url']
277
  #Extract the data from url
278
- extracted = Extractor().extract(requests.get(url).text)
279
- input_batch_content.append(extracted['content'])
 
 
 
 
 
 
 
280
  else:
281
  print("[i] Data is news contents")
282
  if isinstance(input_batch_r[0], list):
 
1
+ #Choose the extractor. Both extractnet & dragnet have dependency conflicts with bertopic
2
+ EXTRACTOR_NET = 'trafilatura'
3
+
4
  import numpy as np
5
  import onnxruntime
6
  import onnx
7
  import gradio as gr
8
  import requests
9
  import json
10
+
11
+ if(EXTRACTOR_NET == 'extractnet'):
12
+ from extractnet import Extractor
13
+ elif(EXTRACTOR_NET == 'dragnet'):
14
+ from dragnet import extract_content
15
+ elif(EXTRACTOR_NET == 'trafilatura'):
16
+ import trafilatura
17
+
18
  from extractnet import Extractor
19
  import math
20
  from transformers import AutoTokenizer
 
286
  if archive['archived']:
287
  url = archive['url']
288
  #Extract the data from url
289
+ if(EXTRACTOR_NET == 'extractnet'):
290
+ extracted = Extractor().extract(requests.get(url).text)
291
+ input_batch_content.append(extracted['content'])
292
+ elif(EXTRACTOR_NET == 'dragnet'):
293
+ extracted = extract_content(requests.get(url).content)
294
+ input_batch_content.append(extracted)
295
+ elif(EXTRACTOR_NET == 'trafilatura'):
296
+ extracted = trafilatura.extract(trafilatura.fetch_url(url), include_comments=False)
297
+ input_batch_content.append(extracted)
298
  else:
299
  print("[i] Data is news contents")
300
  if isinstance(input_batch_r[0], list):