rdose commited on
Commit
bd8c37c
·
1 Parent(s): 1f028f9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -0
app.py CHANGED
@@ -111,6 +111,7 @@ def _inference_classifier(text):
111
  return sigmoid(ort_outs[0])
112
 
113
  def inference(input_batch,isurl,use_archive,limit_companies=10):
 
114
  input_batch_content = []
115
  # if file_in.name is not "":
116
  # print("[i] Input is file:",file_in.name)
@@ -136,6 +137,7 @@ def inference(input_batch,isurl,use_archive,limit_companies=10):
136
  url = row_in[0]
137
  else:
138
  url = row_in
 
139
  if use_archive:
140
  archive = is_in_archive(url)
141
  if archive['archived']:
@@ -163,6 +165,10 @@ def inference(input_batch,isurl,use_archive,limit_companies=10):
163
  #summary = _inference_summary_model_pipeline(input_batch_content )[0]['generated_text']
164
  #ner_labels = _inference_ner_spancat(input_batch_content ,summary, penalty = 0.8, limit_outputs=limit_companies)
165
  df = pd.DataFrame(prob_outs,columns =['E','S','G'])
 
 
 
 
166
  df['sent_lbl'] = [d['label'] for d in sentiment ]
167
  df['sent_score'] = [d['score'] for d in sentiment ]
168
  print("[i] Pandas output shape:",df.shape)
 
111
  return sigmoid(ort_outs[0])
112
 
113
  def inference(input_batch,isurl,use_archive,limit_companies=10):
114
+ url_list = [] #Only used if isurl
115
  input_batch_content = []
116
  # if file_in.name is not "":
117
  # print("[i] Input is file:",file_in.name)
 
137
  url = row_in[0]
138
  else:
139
  url = row_in
140
+ url_list.append(url)
141
  if use_archive:
142
  archive = is_in_archive(url)
143
  if archive['archived']:
 
165
  #summary = _inference_summary_model_pipeline(input_batch_content )[0]['generated_text']
166
  #ner_labels = _inference_ner_spancat(input_batch_content ,summary, penalty = 0.8, limit_outputs=limit_companies)
167
  df = pd.DataFrame(prob_outs,columns =['E','S','G'])
168
+ if isurl:
169
+ df['URL'] = url_list
170
+ else:
171
+ df['content_id'] = range(1, len(input_batch_r)+1)
172
  df['sent_lbl'] = [d['label'] for d in sentiment ]
173
  df['sent_score'] = [d['score'] for d in sentiment ]
174
  print("[i] Pandas output shape:",df.shape)