import os import re import math import requests import json import itertools import numpy as np import pandas as pd import onnxruntime import onnx import gradio as gr from huggingface_hub import hf_hub_url, cached_download from transformers import AutoTokenizer from transformers import pipeline try: from extractnet import Extractor EXTRACTOR_NET = 'extractnet' except ImportError: try: from dragnet import extract_content EXTRACTOR_NET = 'dragnet' except ImportError: try: import trafilatura from trafilatura.settings import use_config EXTRACTOR_NET = 'trafilatura' trafilatura_config = use_config() trafilatura_config.set("DEFAULT", "EXTRACTION_TIMEOUT", "0") #To avoid it runnig signals to avoid clashing with gradio threads except ImportError: raise ImportError print('[i] Using',EXTRACTOR_NET) import spacy from bertopic import BERTopic import nltk nltk.download('stopwords') nltk.download('wordnet') nltk.download('omw-1.4') from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.stem import PorterStemmer from unicodedata import normalize OUT_HEADERS = ['E','S','G'] DF_SP500 = pd.read_csv('SP500_constituents.zip',compression=dict(method='zip')) MODEL_TRANSFORMER_BASED = "distilbert-base-uncased" MODEL_ONNX_FNAME = "ESG_classifier_batch.onnx" MODEL_SENTIMENT_ANALYSIS = "ProsusAI/finbert" #MODEL3 #BERTOPIC_REPO_ID = "oMateos2020/BERTopic-paraphrase-MiniLM-L3-v2-51topics-guided-model3" #BERTOPIC_FILENAME = "BERTopic-paraphrase-MiniLM-L3-v2-51topics-guided-model3" #bertopic_model = BERTopic.load(cached_download(hf_hub_url(BERTOPIC_REPO_ID , BERTOPIC_FILENAME )), embedding_model="paraphrase-MiniLM-L3-v2") BERTOPIC_REPO_ID = "oMateos2020/BERTopic-distilbert-base-nli-mean-tokens" BERTOPIC_FILENAME = "BERTopic-distilbert-base-nli-mean-tokens" bertopic_model = BERTopic.load(cached_download(hf_hub_url(BERTOPIC_REPO_ID , BERTOPIC_FILENAME ))) #SECTOR_LIST = list(DF_SP500.Sector.unique()) SECTOR_LIST = ['Industry', 'Health', 'Technology', 'Communication', 'Consumer Staples', 'Consumer Discretionary', 'Utilities', 'Financials', 'Materials', 'Real Estate', 'Energy'] def _topic_sanitize_word(text): """Función realiza una primera limpieza-normalización del texto a traves de expresiones regex""" text = re.sub(r'@[\w_]+|#[\w_]+|https?://[\w_./]+', '', text) # Elimina menciones y URL, esto sería más para Tweets pero por si hay alguna mención o URL al ser criticas web text = re.sub('\S*@\S*\s?', '', text) # Elimina correos electronicos text = re.sub(r'\((\d+)\)', '', text) #Elimina numeros entre parentesis text = re.sub(r'^\d+', '', text) #Elimina numeros sueltos text = re.sub(r'\n', '', text) #Elimina saltos de linea text = re.sub('\s+', ' ', text) # Elimina espacios en blanco adicionales text = re.sub(r'[“”]', '', text) # Elimina caracter citas text = re.sub(r'[()]', '', text) # Elimina parentesis text = re.sub('\.', '', text) # Elimina punto text = re.sub('\,', '', text) # Elimina coma text = re.sub('’s', '', text) # Elimina posesivos #text = re.sub(r'-+', '', text) # Quita guiones para unir palabras compuestas (normalizaría algunos casos, exmujer y ex-mujer, todos a exmujer) text = re.sub(r'\.{3}', ' ', text) # Reemplaza puntos suspensivos # Esta exp regular se ha incluido "a mano" tras ver que era necesaria para algunos ejemplos text = re.sub(r"([\.\?])", r"\1 ", text) # Introduce espacio despues de punto e interrogacion # -> NFD (Normalization Form Canonical Decomposition) y eliminar diacríticos text = re.sub(r"([^n\u0300-\u036f]|n(?!\u0303(?![\u0300-\u036f])))[\u0300-\u036f]+", r"\1", normalize( "NFD", text), 0, re.I) # Eliminación de diacriticos (acentos y variantes puntuadas de caracteres por su forma simple excepto la 'ñ') # -> NFC (Normalization Form Canonical Composition) text = normalize( 'NFC', text) return text.lower().strip() def _topic_clean_text(text, lemmatize=True, stem=True): words = text.split() non_stopwords = [word for word in words if word not in stopwords.words('english')] clean_text = [_topic_sanitize_word(word) for word in non_stopwords] if lemmatize: lemmatizer = WordNetLemmatizer() clean_text = [lemmatizer.lemmatize(word) for word in clean_text] if stem: ps =PorterStemmer() clean_text = [ps.stem(word) for word in clean_text] return ' '.join(clean_text).strip() SECTOR_TOPICS = [] for sector in SECTOR_LIST: topics, _ = bertopic_model.find_topics(_topic_clean_text(sector), top_n=5) SECTOR_TOPICS.append(topics) def _topic2sector(pred_topics): out = [] for pred_topic in pred_topics: relevant_sectors = [] for i in range(len(SECTOR_LIST)): if pred_topic in SECTOR_TOPICS[i]: relevant_sectors.append(list(DF_SP500.Sector.unique())[i]) out.append(relevant_sectors) return out def _inference_topic_match(text): out, _ = bertopic_model.transform([_topic_clean_text(t) for t in text]) return out def get_company_sectors(extracted_names, threshold=0.95): ''' ''' from thefuzz import process, fuzz output = [] standard_names_tuples = [] for extracted_name in extracted_names: name_match = process.extractOne(extracted_name, DF_SP500.Name, scorer=fuzz.token_set_ratio) similarity = name_match[1]/100 if similarity >= threshold: standard_names_tuples.append(name_match[:2]) for extracted_name in extracted_names: name_match = process.extractOne(extracted_name, DF_SP500.Symbol, scorer=fuzz.token_set_ratio) similarity = name_match[1]/100 if similarity >= threshold: standard_names_tuples.append(name_match[:2]) for std_comp_name, _ in standard_names_tuples: sectors = list(DF_SP500[['Name','Sector','Symbol']].where( (DF_SP500.Name == std_comp_name) | (DF_SP500.Symbol == std_comp_name)).dropna().itertuples(index=False, name=None)) output += sectors return output def filter_spans(spans, keep_longest=True): """Filter a sequence of spans and remove duplicates or overlaps. Useful for creating named entities (where one token can only be part of one entity) or when merging spans with `Retokenizer.merge`. When spans overlap, the (first) longest span is preferred over shorter spans. spans (Iterable[Span]): The spans to filter. keep_longest (bool): Specify whether to keep longer or shorter spans. RETURNS (List[Span]): The filtered spans. """ get_sort_key = lambda span: (span.end - span.start, -span.start) sorted_spans = sorted(spans, key=get_sort_key, reverse=keep_longest) #print(f'sorted_spans: {sorted_spans}') result = [] seen_tokens = set() for span in sorted_spans: # Check for end - 1 here because boundaries are inclusive if span.start not in seen_tokens and span.end - 1 not in seen_tokens: result.append(span) seen_tokens.update(range(span.start, span.end)) result = sorted(result, key=lambda span: span.start) return result def _inference_ner_spancat(text, limit_outputs=10): nlp = spacy.load("en_pipeline") out = [] for doc in nlp.pipe(text): spans = doc.spans["sc"] #comp_raw_text = dict( sorted( dict(zip([str(x) for x in spans],[float(x)*penalty for x in spans.attrs['scores']])).items(), key=lambda x: x[1], reverse=True) ) company_list = list(set([str(span).replace('\'s', '').replace('\u2019s','') for span in filter_spans(spans, keep_longest=True)]))[:limit_outputs] out.append(get_company_sectors(company_list)) return out #def _inference_summary_model_pipeline(text): # pipe = pipeline("text2text-generation", model=MODEL_SUMMARY_PEGASUS) # return pipe(text,truncation='longest_first') def _inference_sentiment_model_pipeline(text): tokenizer_kwargs = {'padding':True,'truncation':True,'max_length':512}#,'return_tensors':'pt'} pipe = pipeline("sentiment-analysis", model=MODEL_SENTIMENT_ANALYSIS ) return pipe(text,**tokenizer_kwargs) #def _inference_sentiment_model_via_api_query(payload): # response = requests.post(API_HF_SENTIMENT_URL , headers={"Authorization": os.environ['hf_api_token']}, json=payload) # return response.json() def _lematise_text(text): nlp = spacy.load("en_core_web_sm", disable=['ner']) text_out = [] for doc in nlp.pipe(text): #see https://spacy.io/models#design new_text = "" for token in doc: if (not token.is_punct and not token.is_stop and not token.like_url and not token.is_space and not token.like_email #and not token.like_num and not token.pos_ == "CONJ"): new_text = new_text + " " + token.lemma_ text_out.append( new_text ) return text_out def sigmoid(x): return 1 / (1 + np.exp(-x)) def to_numpy(tensor): return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy() def is_in_archive(url): try: r = requests.get('http://archive.org/wayback/available?url='+url) archive = json.loads(r.text) if archive['archived_snapshots'] : archive['archived_snapshots']['closest'] return {'archived':archive['archived_snapshots']['closest']['available'], 'url':archive['archived_snapshots']['closest']['url'],'error':0} else: return {'archived':False, 'url':"", 'error':0} except: print(f"[E] Quering URL ({url}) from archive.org") return {'archived':False, 'url':"", 'error':-1} #def _inference_ner(text): # return labels def _inference_classifier(text): tokenizer = AutoTokenizer.from_pretrained(MODEL_TRANSFORMER_BASED) inputs = tokenizer(_lematise_text(text), return_tensors="np", padding="max_length", truncation=True) #this assumes head-only! ort_session = onnxruntime.InferenceSession(MODEL_ONNX_FNAME) onnx_model = onnx.load(MODEL_ONNX_FNAME) onnx.checker.check_model(onnx_model) # compute ONNX Runtime output prediction ort_outs = ort_session.run(None, input_feed=dict(inputs)) return sigmoid(ort_outs[0]) def inference(input_batch,isurl,use_archive,filt_companies_topic,limit_companies=10): url_list = [] #Only used if isurl input_batch_content = [] # if file_in.name is not "": # print("[i] Input is file:",file_in.name) # dft = pd.read_csv( # file_in.name, # compression=dict(method='zip') # ) # assert file_col_name in dft.columns, "Indicated col_name not found in file" # input_batch_r = dft[file_col_name].values.tolist() # else: print("[i] Input is list") assert len(input_batch) > 0, "input_batch array is empty" input_batch_r = input_batch print("[i] Input size:",len(input_batch_r)) if isurl: print("[i] Data is URL") if use_archive: print("[i] Use chached URL from archive.org") print("[i] Extracting contents using",EXTRACTOR_NET) for row_in in input_batch_r: if isinstance(row_in , list): url = row_in[0] else: url = row_in url_list.append(url) if use_archive: archive = is_in_archive(url) if archive['archived']: url = archive['url'] #Extract the data from url if(EXTRACTOR_NET == 'extractnet'): extracted = Extractor().extract(requests.get(url).text) input_batch_content.append(extracted['content']) elif(EXTRACTOR_NET == 'dragnet'): extracted = extract_content(requests.get(url).content) input_batch_content.append(extracted) elif(EXTRACTOR_NET == 'trafilatura'): try: extracted = trafilatura.extract(trafilatura.fetch_url(url), include_comments=False, config=trafilatura_config, include_tables=False) assert len(extracted)>100, "[W] Failed extracting "+url+" retrying with archived version" except: archive = is_in_archive(url) if archive['archived']: print("[W] Using archive.org version of",url) url = archive['url'] extracted = trafilatura.extract(trafilatura.fetch_url(url), include_comments=False, config=trafilatura_config, include_tables=False) else: print("[E] URL=",url,"not found") extracted = "" url_list.pop() #Remove last from list if len(extracted)>100: input_batch_content.append(extracted) else: print("[i] Data is news contents") if isinstance(input_batch_r[0], list): print("[i] Data is list of lists format") for row_in in input_batch_r: input_batch_content.append(row_in[0]) else: print("[i] Data is single list format") input_batch_content = input_batch_r print("[i] Batch size:",len(input_batch_content)) print("[i] Running ESG classifier inference...") prob_outs = _inference_classifier(input_batch_content) print("[i] Classifier output shape:",prob_outs.shape) print("[i] Running sentiment using",MODEL_SENTIMENT_ANALYSIS ,"inference...") sentiment = _inference_sentiment_model_pipeline(input_batch_content ) print("[i] Running NER using custom spancat inference...") ner_labels = _inference_ner_spancat(input_batch_content ,limit_outputs=limit_companies) print("[i] Extracting topic using custom BERTopic...") topics = _inference_topic_match(input_batch_content) news_sectors = _topic2sector(topics) df = pd.DataFrame(prob_outs,columns =['E','S','G']) if isurl: df['URL'] = url_list else: df['content_id'] = range(1, len(input_batch_r)+1) df['sent_lbl'] = [d['label'] for d in sentiment ] df['sent_score'] = [d['score'] for d in sentiment ] df['topic'] = pd.DataFrame(news_sectors).iloc[:, 0] #df['sector_pred'] = pd.DataFrame(_topic2sector(topics)).iloc[:, 0] print("[i] Pandas output shape:",df.shape) #[[], [('Nvidia', 'Information Technology')], [('Twitter', 'Communication Services'), ('Apple', 'Information Technology')], [], [], [], [], [], []] df["company"] = np.nan df["sector"] = np.nan df["symbol"] = np.nan dfo = pd.DataFrame(columns=['E','S','G','URL','sent_lbl','sent_score','topic','company','sector','symbol']) for idx in range(len(df.index)): if ner_labels[idx]: #not empty for ner in ner_labels[idx]: if filt_companies_topic: if news_sectors[idx]: #not empty if news_sectors[idx][0] not in ner[1]: continue dfo = pd.concat( [dfo, df.loc[[idx]].assign(company=ner[0], sector=ner[1], symbol=ner[2])], join='outer', ignore_index=True) #axis=0 print("[i] Pandas output shape:",dfo.shape) return dfo.drop_duplicates() title = "ESG API Demo" description = """This is a demonstration of the full ESG pipeline backend where given a list of URL (english, news) the news contents are extracted, using extractnet, and fed to three models: - A custom scheme for company extraction - A custom ESG classifier for the ESG labeling of the news - An off-the-shelf sentiment classification model (ProsusAI/finbert) API input parameters: - List: list of text. Either list of Url of the news (english) or list of extracted news contents - 'Data type': int. 0=list is of extracted news contents, 1=list is of urls. - `use_archive`: boolean. The model will extract the archived version in archive.org of the url indicated. This is useful with old news and to bypass news behind paywall - `filter_companies`: boolean. Filter companies by news' topic - `limit_companies`: integer. Number of found relevant companies to report. """ examples = [[ [['https://www.bbc.com/news/uk-62732447'], ["https://www.science.org/content/article/suspicions-grow-nanoparticles-pfizer-s-covid-19-vaccine-trigger-rare-allergic-reactions"], ["https://www.cnbc.com/2022/09/14/omicron-specific-covid-booster-shot-side-effects-what-to-expect.html"], ["https://www.reuters.com/business/healthcare-pharmaceuticals/brazil-approves-pfizer-vaccine-children-young-six-months-2022-09-17/"], ["https://www.statnews.com/2022/09/06/pfizer-covid-vaccines-researchers-next-gen-studies/"], ["https://www.cms.gov/newsroom/news-alert/updated-covid-19-vaccines-providing-protection-against-omicron-variant-available-no-cost"], ["https://www.bbc.com/news/health-62691102"], ["https://news.bloomberglaw.com/esg/abbvie-board-faces-new-investor-suit-over-humira-kickback-claims"], ["https://esgnews.com/amazon-backed-infinium-to-provide-ultra-low-carbon-electrofuels-for-use-in-trucking-fleet-in-2023/"], ["https://esgnews.com/comcast-announces-plan-to-double-energy-efficiency-by-2030-to-power-a-greener-internet/"], ["https://esgnews.com/ges-facts-technology-helps-the-city-of-los-angeles-move-closer-to-its-renewable-energy-goals/"], ['https://www.bbc.com/news/science-environment-62758811'], ['https://www.bbc.com/news/business-62524031'], ["https://www.knowesg.com/investors/blackstone-and-sphera-work-together-for-portfolio-decarbonization-program-17022022"], ["https://www.esgtoday.com/amazon-partners-with-matt-damons-water-org-to-provide-water-access-to-100-million-people/"], ["https://www.esgtoday.com/walmart-allocates-over-1-billion-to-renewable-energy-sustainable-buildings-circular-economy/"], ["https://www.esgtoday.com/anglo-american-ties-interest-on-745-million-bond-to-climate-water-job-creation-goals/"], ["https://www.esgtoday.com/blackrock-acquires-new-zealand-solar-as-a-service-provider-solarzero/"], ["https://www.esgtoday.com/blackrock-strikes-back-against-climate-activism-claims/"], ["https://www.esgtoday.com/hm-to-remove-sustainability-labels-from-products-following-investigation-by-regulator/"], ["https://www.knowesg.com/sustainable-finance/exxonmobil-fails-the-energy-transition-due-to-failed-governance-structure-04122021"], ["https://www.knowesg.com/companies/tesla-is-investigated-by-the-securities-and-exchange-commission-sec-on-solar-07122021"], ["https://www.knowesg.com/tech/pcg-and-exxonmobil-will-collaborate-on-plastic-recycling-in-malaysia-20092022"], ["https://esgnews.com/nike-launches-community-climate-resilience-program-with-2-million-grant-to-trust-for-public-land/"], ["https://esgnews.com/walmart-and-unitedhealth-group-collaborate-to-deliver-access-to-high-quality-affordable-health-care/"], ['https://www.bbc.com/news/science-environment-62680423']],'url',False,False,5]] demo = gr.Interface(fn=inference, inputs=[gr.Dataframe(label='input batch', col_count=1, datatype='str', type='array', wrap=True), gr.Dropdown(label='data type', choices=['text','url'], type='index', value='url'), gr.Checkbox(label='Parse cached in archive.org'), gr.Checkbox(label='Filter out companies by topic'), gr.Slider(minimum=1, maximum=10, step=1, label='Limit NER output', value=5)], outputs=[gr.Dataframe(label='output raw', col_count=1, type='pandas', wrap=True, header=OUT_HEADERS)], #gr.Label(label='Company'), #gr.Label(label='ESG'), #gr.Label(label='Sentiment'), #gr.Markdown()], title=title, description=description, examples=examples) demo.launch()