File size: 8,515 Bytes
1bc3235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33c298f
1bc3235
 
 
 
33c298f
 
1bc3235
33c298f
 
1bc3235
33c298f
 
1bc3235
 
 
 
 
 
 
 
 
19f91d8
1bc3235
 
 
 
 
 
 
19f91d8
1bc3235
 
 
 
 
 
 
19f91d8
1bc3235
 
 
 
 
 
 
 
19f91d8
1bc3235
 
 
 
 
 
 
 
 
 
19f91d8
1bc3235
 
 
 
 
 
 
19f91d8
1bc3235
 
 
 
 
 
 
 
 
19f91d8
1bc3235
 
 
 
 
 
 
 
 
 
 
 
19f91d8
1bc3235
 
 
 
 
 
 
 
 
19f91d8
1bc3235
 
 
 
 
19f91d8
1bc3235
 
 
 
 
33c298f
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc3235
 
 
 
 
 
 
33c298f
1bc3235
33c298f
1bc3235
33c298f
1bc3235
 
 
 
 
 
 
 
 
 
 
 
 
 
33c298f
 
1bc3235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# %%
import pandas as pd

import pickle


# %%
# Define the file path for the pickle file
pickle_file_path = 'model_data.pkl'

# Function to save dictionaries to a pickle file
def save_to_pickle(sets_dict, params_dict):
    with open(pickle_file_path, 'wb') as file:
        pickle.dump({'sets': sets_dict, 'params': params_dict}, file)

# Function to load dictionaries from a pickle file
def load_from_pickle():
    with open(pickle_file_path, 'rb') as file:
        data = pickle.load(file)
    return data['sets'], data['params']


 
def load_data_from_excel(url_excel, write_to_pickle_flag = True):



    # Timesteps
    df_excel = pd.read_excel(url_excel, sheet_name='Timesteps_All', header=None)
    t = pd.Index(df_excel.iloc[:, 0], name='t')

    # Technologies
    df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
    i = pd.Index(df_excel.iloc[:, 0], name='i')

    df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
    iConv = pd.Index(df_excel.iloc[0:6, 2], name='iConv')       # changed to 6 from 7

    df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
    iRes = pd.Index(df_excel.iloc[0:4, 4], name='iRes')

    # df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
    # iSto = pd.Index(df_excel.iloc[0:2, 6], name='iSto')

    # df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
    # iPtG = pd.Index(df_excel.iloc[0:1, 8], name='iPtG')

    # df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
    # iHyRes = pd.Index(df_excel.iloc[0:1, 10], name='iHyRes')

    # Parameters
    l_co2 =  pd.read_excel(url_excel, sheet_name='CO2_Cap').iloc[0,0]
    p_co2 = 0
    dt = 1

    # Demand
    df_excel= pd.read_excel(url_excel, sheet_name = 'Demand')
    #df_melt = pd.melt(df_excel, id_vars='Zeit')
    df_excel = df_excel.rename(columns = {'Zeitschritte':'t', 'Unnamed: 1':'Nachfrage'})
    #df_excel  = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
    df_excel = df_excel.fillna(0)
    df_excel = df_excel.set_index('t')
    D_t = df_excel.iloc[:,0].to_xarray()

    ## Efficiencies
    df_excel = pd.read_excel(url_excel, sheet_name = 'Efficiency')
    df_excel = df_excel.rename(columns = {'Alle':'i', 'Unnamed: 1':'Wirkungsgrad'})
    df_excel  = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
    df_excel = df_excel.fillna(0)
    df_excel = df_excel.set_index('i')
    eff_i = df_excel.iloc[:,0].to_xarray()

     ## Lifespan
    df_excel = pd.read_excel(url_excel, sheet_name = 'Lifespan')
    df_excel = df_excel.rename(columns = {'Alle':'i', 'Unnamed: 1':'Nutzungsdauer'})
    df_excel  = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
    df_excel = df_excel.fillna(0)
    df_excel = df_excel.set_index('i')
    life_i = df_excel.iloc[:,0].to_xarray()

    ## Variable costs
    # Fuel costs
    df_excel = pd.read_excel(url_excel, sheet_name = 'FuelCosts')
    df_excel = df_excel.rename(columns = {'Konventionell':'i', 'Unnamed: 1':'Brennstoffkosten'})
    df_excel  = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
    df_excel = df_excel.fillna(0)
    df_excel = df_excel.set_index('i')
    c_fuel_i = df_excel.iloc[:,0].to_xarray()
    # Apply slider value
    #c_fuel_i.loc[dict(i = 'Fossil Gas')]  = price_gas
    #c_fuel_i.loc[dict(i = 'H2')]  = price_h2

    # Other var. costs
    df_excel = pd.read_excel(url_excel, sheet_name = 'OtherVarCosts')
    df_excel = df_excel.rename(columns = {'Konventionell':'i', 'Unnamed: 1':'Sonstige Variable Kosten'})
    df_excel  = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
    df_excel = df_excel.fillna(0)
    df_excel = df_excel.set_index('i')
    c_other_i = df_excel.iloc[:,0].to_xarray()

    # Investment costs
    df_excel = pd.read_excel(url_excel, sheet_name = 'InvCosts')
    df_excel = df_excel.rename(columns = {'Alle':'i', 'Unnamed: 1':'Investitionen'})
    df_excel  = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
    df_excel = df_excel.fillna(0)
    df_excel = df_excel.set_index('i')
    interest_rate = 0.07
    annuity_factor_i = (interest_rate * (1 + interest_rate)**life_i) / ((1 + interest_rate)**life_i - 1)
    c_inv_i = df_excel.iloc[:,0].to_xarray()*1000*annuity_factor_i

    # Emission factor
    df_excel = pd.read_excel(url_excel, sheet_name = 'EmFactor')
    df_excel = df_excel.rename(columns = {'Konventionell':'i', 'Unnamed: 1':'CO2-Faktor'})
    df_excel  = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
    df_excel = df_excel.fillna(0)
    df_excel = df_excel.set_index('i')
    co2_factor_i = df_excel.iloc[:,0].to_xarray()

    ## Calculation of variable costs
    c_var_i = (c_fuel_i.sel(i = iConv) + p_co2 * co2_factor_i.sel(i = iConv)) / eff_i.sel(i = iConv) + c_other_i.sel(i = iConv)

    # RES capacity factors
    #df_excel = pd.read_excel(url_excel, sheet_name = 'RES',header=[0,1])
    #df_excel = pd.read_excel(url_excel, sheet_name = 'RES', index_col=['Timesteps'], columns=['PV', 'WindOn', 'WindOff', 'RoR'])
    df_excel = pd.read_excel(url_excel, sheet_name = 'RES')
    df_excel = df_excel.set_index(['Zeitschritte'])
    df_test = df_excel
    df_excel = df_excel.stack()
    #df_excel = df_excel.rename(columns={'PV', 'WindOn', 'WindOff', 'RoR'})
    df_test2 = df_excel
    #df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
    #df_excel = df_excel.fillna(0)

    #df_test = df_excel.set_index(['Timesteps', 'PV', 'WindOn', 'WindOff', 'RoR']).stack([0])
    #df_test.index = df_test.index.set_names(['t','i'])
    s_t_r_iRes = df_excel.to_xarray().rename({'level_1': 'i','Zeitschritte':'t'})

    #s_t_r_iRes = df_excel.iloc[:,0].to_xarray()

    # Base capacities
    df_excel = pd.read_excel(url_excel, sheet_name = 'InstalledCap')
    df_excel = df_excel.rename(columns = {'Alle':'i', 'Unnamed: 1':'Installierte Kapazität'})
    df_excel  = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
    df_excel = df_excel.fillna(0)
    df_excel = df_excel.set_index('i')
    K_0_i = df_excel.iloc[:,0].to_xarray()

    # # Energy-to-power ratio storages
    # df_excel = pd.read_excel(url_excel, sheet_name = 'E2P')  
    # df_excel = df_excel.rename(columns = {'Speicher':'i', 'Unnamed: 1':'E2P-Ratio'})
    # #df_excel  = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
    # df_excel = df_excel.fillna(0)
    # df_excel = df_excel.set_index('i')
    # e2p_iSto = df_excel.iloc[:,0].to_xarray()

    # # Inflow for hydro reservoir
    # df_excel = pd.read_excel(url_excel, sheet_name = 'HydroInflow')
    # df_excel = df_excel.rename(columns = {'Zeitschritte':'t', 'Staudamm':'Zufluss'})
    # df_excel = df_excel.fillna(0)
    # df_excel = df_excel.set_index('t')
    # h_t = df_excel.iloc[:,0].to_xarray()

    
    sets_dict = {}
    params_dict = {}
    # Append parameters to the dictionary
    sets_dict['t'] = t
    sets_dict['i'] = i
    # sets_dict['iSto'] = iSto
    sets_dict['iConv'] = iConv
    # sets_dict['iPtG'] = iPtG
    sets_dict['iRes'] = iRes
    # sets_dict['iHyRes'] = iHyRes
    # Append parameters to the dictionary
    params_dict['l_co2'] = l_co2
    params_dict['p_co2'] = p_co2
    params_dict['dt'] = dt
    params_dict['D_t'] = D_t
    params_dict['eff_i'] = eff_i
    params_dict['life_i'] = life_i
    params_dict['c_fuel_i'] = c_fuel_i
    params_dict['c_other_i'] = c_other_i
    params_dict['c_inv_i'] = c_inv_i
    params_dict['co2_factor_i'] = co2_factor_i
    params_dict['c_var_i'] = c_var_i
    params_dict['s_t_r_iRes'] = s_t_r_iRes
    params_dict['K_0_i'] = K_0_i
    # params_dict['e2p_iSto'] = e2p_iSto
    # params_dict['h_t'] = h_t

    if write_to_pickle_flag:
        save_to_pickle(sets_dict, params_dict)

    return sets_dict, params_dict


# %%
# # Example usage:
# url_excel = "Input_Jahr_2021.xlsx"  # Replace with your actual file path
# limit_co2 = 0.5
# price_co2 = 50
# price_gas = 3
# price_h2 = 5

# sets, params = load_data_from_excel(url_excel,write_to_pickle_flag=True)

# # %%
# sets, params = load_data_from_excel(url_excel,load_from_pickle_flag=True)
# # %%


if __name__ == "__main__":
        url_excel = r'Input_Jahr_2021.xlsx'
        sets_dict, params_dict= load_data_from_excel(url_excel, write_to_pickle_flag= False)