Spaces:
Sleeping
Sleeping
File size: 43,377 Bytes
41f2cd0 4407904 41f2cd0 4407904 41f2cd0 4407904 41f2cd0 4407904 41f2cd0 4407904 8758d05 41f2cd0 4407904 564513c 4407904 919458a 4407904 c916cb6 4407904 4de981d fa00485 4407904 41f2cd0 4407904 919458a 41f2cd0 4407904 41f2cd0 6c048cb 4407904 41f2cd0 4407904 41f2cd0 4407904 41f2cd0 919458a 4407904 41f2cd0 4407904 919458a 4407904 41f2cd0 4de981d 4407904 919458a 4407904 919458a 4407904 bba7bb1 4407904 bba7bb1 4407904 bba7bb1 4407904 bba7bb1 4407904 919458a 4407904 919458a 4407904 919458a 8758d05 4407904 919458a 4407904 41f2cd0 4407904 a9e5e58 4407904 8758d05 4407904 8758d05 4407904 a9e5e58 4407904 e54aef8 4407904 8758d05 4407904 3e9e0cc 6c048cb 4407904 8758d05 4407904 8758d05 4407904 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 |
# -*- coding: utf-8 -*-
"""
Energy system optimization model
HEMF EWL: Christopher Jahns, Julian Radek, Hendrik Kramer, Cornelia Klüter, Yannik Pflugfelder
"""
import numpy as np
import pandas as pd
import xarray as xr
import plotly.express as px
import streamlit as st
from io import BytesIO
import xlsxwriter
from linopy import Model
import sourced as src
# Main function to run the Streamlit app
def main():
"""
Main function to set up and solve the energy system optimization model, and handle user inputs and outputs.
"""
setup_page()
settings = load_settings()
# fill session space with variables that are needed on all pages
if 'settings' not in st.session_state:
st.session_state.df = load_settings()
st.session_state.settings = settings
if 'url_excel' not in st.session_state:
st.session_state.url_excel = None
if 'ui_model' not in st.session_state:
st.session_state.url_excel = None
if 'output' not in st.session_state:
st.session_state.output = BytesIO()
setup_sidebar(st.session_state.settings["df"])
# Navigation
pg = st.navigation([st.Page(page_model, title=st.session_state.settings["df"].loc['menu_modell',st.session_state.lang], icon="📊"),
st.Page(page_documentation, title=st.session_state.settings["df"].loc['menu_doku',st.session_state.lang], icon="📓"),
st.Page(page_about_us, title=st.session_state.settings["df"].loc['menu_impressum',st.session_state.lang], icon="💬")],
expanded=True)
# # Run the app
pg.run()
# Load settings and initial configurations
def load_settings():
"""
Load settings for the app, including colors and language information.
"""
settings = {
'write_pickle_from_standard_excel': True,
'df': pd.read_csv("language.csv", encoding="iso-8859-1", index_col="Label", sep=";"),
'color_dict': {
'Biomass': 'lightgreen',
'Lignite': 'brown',
'Fossil Gas': 'grey',
'Fossil Hard coal': 'darkgrey',
'Fossil Oil': 'maroon',
'RoR': 'aquamarine',
'Hydro Water Reservoir': 'azure',
'Nuclear': 'orange',
'PV': 'yellow',
'WindOff': 'darkblue',
'WindOn': 'green',
'H2': 'crimson',
'Pumped Hydro Storage': 'lightblue',
'Battery storages': 'red',
'Electrolyzer': 'olive'
},
'colors': {
'hemf_blau_dunkel': "#00386c",
'hemf_blau_hell': "#00529f",
'hemf_rot_dunkel': "#8b310d",
'hemf_rot_hell': "#d04119",
'hemf_grau': "#dadada"
}
}
return settings
# Initialize Streamlit app
def setup_page():
"""
Set up the Streamlit page with a specific layout, title, and favicon.
"""
st.set_page_config(layout="wide", page_title="Investment tool", page_icon="media/favicon.ico", initial_sidebar_state="expanded")
# Sidebar for language and links
def setup_sidebar(df):
"""
Set up the sidebar with language options and external links.
"""
st.session_state.lang = st.sidebar.selectbox("Language", ["🇬🇧 EN", "🇩🇪 DE"], key="foo", label_visibility="collapsed")[-2:]
st.sidebar.markdown("""
<style>
text-align: center;
display: block;
margin-left: auto;
margin-right: auto;
width: 100%;
</style>
""", unsafe_allow_html=True)
with st.sidebar:
left_co, cent_co, last_co = st.columns([0.1, 0.8, 0.1])
with cent_co:
st.text(" ") # add vertical empty space
""+df.loc['menu_text', st.session_state.lang]
st.text(" ") # add vertical empty space
if st.session_state.lang == "DE":
st.write("Schaue vorbei beim")
st.markdown(r'[Lehrstuhl für Energiewirtschaft](https://www.ewl.wiwi.uni-due.de)', unsafe_allow_html=True)
elif st.session_state.lang == "EN":
st.write("Get in touch with the")
st.markdown(r'[Chair of Management Science and Energy Economics](https://www.ewl.wiwi.uni-due.de/en)', unsafe_allow_html=True)
st.text(" ") # add vertical empty space
st.image("media/Logo_HEMF.svg", width=200)
st.image("media/Logo_UDE.svg", width=200)
# Load model input data
def load_model_input(df, write_pickle_from_standard_excel):
"""
Load model input data from Excel or Pickle based on user input.
"""
if st.session_state.url_excel is None:
if write_pickle_from_standard_excel:
url_excel = r'Input_Jahr_2021.xlsx'
sets_dict, params_dict = src.load_data_from_excel(url_excel, write_to_pickle_flag=True)
sets_dict, params_dict = src.load_from_pickle()
#st.write(df.loc['model_title1.1', st.session_state.lang])
# st.write('Running with standard data')
else:
url_excel = st.session_state.url_excel
sets_dict, params_dict = src.load_data_from_excel(url_excel, load_from_pickle_flag=False)
st.write(df.loc['model_title1.2', st.session_state.lang])
return sets_dict, params_dict
def page_documentation():
"""
Display documentation and mathematical model details.
"""
df = st.session_state.settings["df"]
st.header(df.loc['constr_header1', st.session_state.lang])
st.write(df.loc['constr_header2', st.session_state.lang])
col1, col2 = st.columns([6, 4])
with col1:
st.header(df.loc['constr_header3', st.session_state.lang])
with st.container():
# Objective function
st.subheader(df.loc['constr_subheader_obj_func', st.session_state.lang])
st.write(df.loc['constr_subheader_obj_func_descr', st.session_state.lang])
st.latex(r''' \text{min } C^{tot} = C^{op} + C^{inv}''')
# Operational costs minus revenue for produced hydrogen
st.write(df.loc['constr_c_op', st.session_state.lang])
st.latex(r''' \sum_{i} y_{t,i} \cdot \left( \frac{c^{fuel}_{i}}{\eta_i} + c_{i}^{other} \right) \cdot \Delta t - \sum_{i \in \mathcal{I}^{PtG}} y^{h2}_{t,i} \cdot p^{h2} \cdot \Delta t = C^{op}''')
# Investment costs
st.write(df.loc['constr_c_inv', st.session_state.lang])
st.latex(r''' \sum_{i} a_{i} \cdot K_{i} \cdot c^{inv}_{i} = C^{inv}''')
# Load-serving constraint
st.write(df.loc['constr_load_serve', st.session_state.lang])
st.latex(r''' \left( \sum_{i} y_{t,i} - \sum_{i} y_{t,i}^{ch} \right) \cdot \Delta t = D_t \cdot \Delta t, \quad \forall t \in \mathcal{T}''')
# Maximum capacity limit
st.write(df.loc['constr_max_cap', st.session_state.lang])
st.latex(r''' y_{t,i} - K_{i} \leq K_{0,i}, \quad \forall i \in \mathcal{I}''')
# Capacity limits for investment
st.write(df.loc['constr_inv_cap', st.session_state.lang])
st.latex(r''' K_{i} \leq 0, \quad \forall i \in \mathcal{I}^{no\_invest}''')
# Prevent power production by PtG
st.write(df.loc['constr_prevent_ptg', st.session_state.lang])
st.latex(r''' y_{t,i} = 0, \quad \forall i \in \mathcal{I}^{PtG}''')
# Prevent charging for non-storage technologies
st.write(df.loc['constr_prevent_chg', st.session_state.lang])
st.latex(r''' y_{t,i}^{ch} = 0, \quad \forall i \in \mathcal{I} \setminus \{ \mathcal{I}^{PtG} \cup \mathcal{I}^{Sto} \}''')
# Maximum storage charging and discharging
st.write(df.loc['constr_max_chg', st.session_state.lang])
st.latex(r''' y_{t,i} + y_{t,i}^{ch} - K_{i} \leq K_{0,i}, \quad \forall i \in \mathcal{I}^{Sto}''')
# Maximum electrolyzer capacity
st.write(df.loc['constr_max_cap_electrolyzer', st.session_state.lang])
st.latex(r''' y_{t,i}^{ch} - K_{i} \leq K_{0,i}, \quad \forall i \in \mathcal{I}^{PtG}''')
# PtG H2 production
st.write(df.loc['constr_prod_ptg', st.session_state.lang])
st.latex(r''' y_{t,i}^{ch} \cdot \eta_i = y_{t,i}^{h2}, \quad \forall i \in \mathcal{I}^{PtG}''')
# Infeed of renewables
st.write(df.loc['constr_inf_res', st.session_state.lang])
st.latex(r''' y_{t,i} + y_{t,i}^{curt} = s_{t,r,i} \cdot (K_{0,i} + K_i), \quad \forall i \in \mathcal{I}^{Res}''')
# Maximum filling level restriction for storage power plants
st.write(df.loc['constr_max_fil_sto', st.session_state.lang])
# st.latex(r''' l_{t,i} \leq K_{0,i} \cdot e2p_i, \quad \forall i \in \mathcal{I}^{Sto}''')
st.latex(r''' l_{t,i} \leq (K_{0,i} + K_{i}) \cdot \gamma_i^{Sto}, \quad \forall i \in \mathcal{I}^{Sto}''')
# Filling level restriction for hydro reservoir
st.write(df.loc['constr_fil_hyres', st.session_state.lang])
st.latex(r''' l_{t+1,i} = l_{t,i} + ( h_{t,i} - y_{t,i}) \cdot \Delta t, \quad \forall i \in \mathcal{I}^{HyRes}''')
# Filling level restriction for other storages
st.write(df.loc['constr_fil_sto', st.session_state.lang])
st.latex(r''' l_{t+1,i} = l_{t,i} - \left(\frac{y_{t,i}}{\eta_i} - y_{t,i}^{ch} \cdot \eta_i \right) \cdot \Delta t, \quad \forall i \in \mathcal{I}^{Sto}''')
# CO2 emission constraint
st.write(df.loc['constr_co2_lim', st.session_state.lang])
st.latex(r''' \sum_{t} \sum_{i} \frac{y_{t,i}}{\eta_i} \cdot \chi^{CO2}_i \cdot \Delta t \leq L^{CO2}''')
with col2:
symbols_container = st.container()
with symbols_container:
st.header(df.loc['symb_header1', st.session_state.lang])
st.write(df.loc['symb_header2', st.session_state.lang])
st.subheader(df.loc['symb_header_sets', st.session_state.lang])
st.write(f"$\mathcal{{T}}$: {df.loc['symb_time_steps', st.session_state.lang]}")
st.write(f"$\mathcal{{I}}$: {df.loc['symb_tech', st.session_state.lang]}")
st.write(f"$\mathcal{{I}}^{{\\text{{Sto}}}}$: {df.loc['symb_sto_tech', st.session_state.lang]}")
st.write(f"$\mathcal{{I}}^{{\\text{{Conv}}}}$: {df.loc['symb_conv_tech', st.session_state.lang]}")
st.write(f"$\mathcal{{I}}^{{\\text{{PtG}}}}$: {df.loc['symb_ptg', st.session_state.lang]}")
st.write(f"$\mathcal{{I}}^{{\\text{{Res}}}}$: {df.loc['symb_res', st.session_state.lang]}")
st.write(f"$\mathcal{{I}}^{{\\text{{HyRes}}}}$: {df.loc['symb_hyres', st.session_state.lang]}")
st.write(f"$\mathcal{{I}}^{{\\text{{no\_invest}}}}$: {df.loc['symb_no_inv', st.session_state.lang]}")
# Variables section
st.subheader(df.loc['symb_header_variables', st.session_state.lang])
st.write(f"$C^{{tot}}$: {df.loc['symb_tot_costs', st.session_state.lang]}")
st.write(f"$C^{{op}}$: {df.loc['symb_c_op', st.session_state.lang]}")
st.write(f"$C^{{inv}}$: {df.loc['symb_c_inv', st.session_state.lang]}")
st.write(f"$K_i$: {df.loc['symb_inst_cap', st.session_state.lang]}")
st.write(f"$y_{{t,i}}$: {df.loc['symb_el_prod', st.session_state.lang]}")
st.write(f"$y_{{t, i}}^{{ch}}$: {df.loc['symb_el_ch', st.session_state.lang]}")
st.write(f"$l_{{t,i}}$: {df.loc['symb_sto_fil', st.session_state.lang]}")
st.write(f"$y_{{t, i}}^{{curt}}$: {df.loc['symb_curt', st.session_state.lang]}")
st.write(f"$y_{{t, i}}^{{h2}}$: {df.loc['symb_h2_ptg', st.session_state.lang]}")
# Parameters section
st.subheader(df.loc['symb_header_parameters', st.session_state.lang])
st.write(f"$D_t$: {df.loc['symb_energy_demand', st.session_state.lang]}")
st.write(f"$p^{{h2}}$: {df.loc['symb_price_h2', st.session_state.lang]}")
st.write(f"$c^{{fuel}}_{{i}}$: {df.loc['symb_fuel_costs', st.session_state.lang]}")
st.write(f"$c_{{i}}^{{other}}$: {df.loc['symb_c_op_other', st.session_state.lang]}")
st.write(f"$c^{{inv}}_{{i}}$: {df.loc['symb_c_inv_tech', st.session_state.lang]}")
st.write(f"$a_{{i}}$: {df.loc['symb_annuity', st.session_state.lang]}")
st.write(f"$\eta_i$: {df.loc['symb_eff_fac', st.session_state.lang]}")
st.write(f"$K_{{0,i}}$: {df.loc['symb_max_cap_tech', st.session_state.lang]}")
st.write(f"$\chi^{{CO2}}_i$: {df.loc['symb_co2_fac', st.session_state.lang]}")
st.write(f"$L^{{CO2}}$: {df.loc['symb_co2_limit', st.session_state.lang]}")
# st.write(f"$e2p_{{\\text{{Sto}}, i}}$: {df.loc['symb_etp', st.session_state.lang]}")
st.write(f"$\gamma^{{\\text{{Sto}}}}_{{i}}$: {df.loc['symb_etp', st.session_state.lang]}")
st.write(f"$s_{{t, r, i}}$: {df.loc['symb_res_supply', st.session_state.lang]}")
st.write(f"$h_{{t, i}}$: {df.loc['symb_hyRes_inflow', st.session_state.lang]}")
# css = float_css_helper(top="50")
# symbols_container.float(css)
def page_about_us():
"""
Display information about the team and the project.
"""
st.write("About Us/Impressum")
def page_model(): #, write_pickle_from_standard_excel, color_dict):
"""
Display the main model page for energy system optimization.
This function sets up the user interface for the model input parameters, loads data, and configures the
optimization model before solving it and presenting the results.
"""
df = st.session_state.settings["df"]
color_dict = st.session_state.settings["color_dict"]
write_pickle_from_standard_excel = st.session_state.settings["write_pickle_from_standard_excel"]
# Load data from Excel or Pickle
sets_dict, params_dict = load_model_input(df, write_pickle_from_standard_excel)
# Unpack sets_dict into the workspace
t = sets_dict['t']
t_original = sets_dict['t']
i = sets_dict['i']
iSto = sets_dict['iSto']
iConv = sets_dict['iConv']
iPtG = sets_dict['iPtG']
iRes = sets_dict['iRes']
iHyRes = sets_dict['iHyRes']
# Unpack params_dict into the workspace
l_co2 = params_dict['l_co2']
p_co2 = params_dict['p_co2']
eff_i = params_dict['eff_i']
life_i = params_dict['life_i']
c_fuel_i = params_dict['c_fuel_i']
c_other_i = params_dict['c_other_i']
c_inv_i = params_dict['c_inv_i']
co2_factor_i = params_dict['co2_factor_i']
K_0_i = params_dict['K_0_i']
e2p_iSto = params_dict['e2p_iSto']
# Adjust efficiency for storage technologies
eff_i.loc[iSto] = np.sqrt(eff_i.loc[iSto]) # Apply square root to cycle efficiency for storage technologies
# Create columns for UI layout
col1, col2 = st.columns([0.30, 0.70], gap="large")
# Load input data
with col1:
st.title(df.loc['model_title1', st.session_state.lang])
with open('Input_Jahr_2021.xlsx', 'rb') as f:
st.download_button(df.loc['model_title1.3',st.session_state.lang], f, file_name='Input_Jahr_2021.xlsx') # Download button for Excel template
st.session_state.url_excel = st.file_uploader(label=df.loc['model_title1.4',st.session_state.lang]) # File uploader for user Excel file
st.title(df.loc['model_title2', st.session_state.lang])
st.download_button(label=df.loc['model_title2.1',st.session_state.lang], disabled=(st.session_state.output.getbuffer().nbytes==0), data=st.session_state.output.getvalue(), file_name="workbook.xlsx", mime="application/vnd.ms-excel")
st.title(df.loc['model_title4', st.session_state.lang])
if st.session_state.url_excel:
run_model = st.button(df.loc['model_run_info_excel', st.session_state.lang], key="run_model_button", help=df.loc['run_model_button_info',st.session_state.lang])
else:
run_model = st.button(df.loc['model_run_info_gui', st.session_state.lang], key="run_model_button", help=df.loc['run_model_button_info',st.session_state.lang])
# Set up user interface for parameters
with col2:
st.title(df.loc['model_title3', st.session_state.lang])
col1param, col2param = st.columns(2)
with col1param:
l_co2 = st.slider(value=int(params_dict['l_co2']), min_value=0, max_value=750, label=df.loc['model_label_co2',st.session_state.lang], step=50)
price_h2 = st.slider(value=100, min_value=0, max_value=300, label=df.loc['model_label_h2',st.session_state.lang], step=10)
for i_idx in params_dict['c_fuel_i'].get_index('i'):
if i_idx in ['Lignite']:
params_dict['c_fuel_i'].loc[i_idx] = st.slider(value=int(params_dict['c_fuel_i'].loc[i_idx]),
min_value=0, max_value=300, label=df.loc[f'model_label_{i_idx}',st.session_state.lang], step=10)
dt = st.number_input(label=df.loc['model_label_t',st.session_state.lang], min_value=1, max_value=len(t), value=6,
help=df.loc['model_label_t_info',st.session_state.lang])
with col2param:
for i_idx in params_dict['c_fuel_i'].get_index('i'):
if i_idx in ['Fossil Hard coal', 'Fossil Oil', 'Fossil Gas']:
params_dict['c_fuel_i'].loc[i_idx] = st.slider(value=int(params_dict['c_fuel_i'].loc[i_idx]),
min_value=0, max_value=300, label=df.loc[f'model_label_{i_idx}',st.session_state.lang], step=10)
# Create a dictionary to map German names to English names
tech_mapping_de_to_en = {
df.loc[f'tech_{tech.lower()}', 'DE']: df.loc[f'tech_{tech.lower()}', 'EN']
for tech in sets_dict['i'] if f'tech_{tech.lower()}' in df.index
}
# Set options and default values based on the selected language
if st.session_state.lang == 'DE':
# German options for the user interface
options = [
df.loc[f'tech_{tech.lower()}', 'DE'] for tech in sets_dict['i'] if f'tech_{tech.lower()}' in df.index
]
default = [
df.loc[f'tech_{tech.lower()}', 'DE'] for tech in ['Lignite', 'Fossil Gas', 'Fossil Hard coal', 'Fossil Oil', 'PV', 'WindOff', 'WindOn', 'H2', 'Pumped Hydro Storage', 'Battery storages', 'Electrolyzer']
if f'tech_{tech.lower()}' in df.index
]
else:
# English options for the user interface
options = sets_dict['i']
default = ['Lignite', 'Fossil Gas', 'Fossil Hard coal', 'Fossil Oil', 'PV', 'WindOff', 'WindOn', 'H2', 'Pumped Hydro Storage', 'Battery storages', 'Electrolyzer']
# Multiselect for technology options in the user interface
selected_technologies = st.multiselect(
label=df.loc['model_label_tech', st.session_state.lang],
options=options,
default=[tech for tech in default if tech in options]
)
# If language is German, map selected German names back to their English equivalents
if st.session_state.lang == 'DE':
technologies_invest = [tech_mapping_de_to_en[tech] for tech in selected_technologies]
else:
technologies_invest = selected_technologies
# Technologies that will not be invested in (based on English names)
technologies_no_invest = [tech for tech in sets_dict['i'] if tech not in technologies_invest]
st.markdown("-------")
# Time series aggregation for various parameters
D_t = timstep_aggregate(dt, params_dict['D_t'], t)
s_t_r_iRes = timstep_aggregate(dt, params_dict['s_t_r_iRes'], t)
h_t = timstep_aggregate(dt, params_dict['h_t'], t)
t = D_t.get_index('t')
partial_year_factor = (8760 / len(t)) / dt
if run_model:
# Model setup
m = Model()
# Define Variables
C_tot = m.add_variables(name='C_tot') # Total costs
C_op = m.add_variables(name='C_op', lower=0) # Operational costs
C_inv = m.add_variables(name='C_inv', lower=0) # Investment costs
K = m.add_variables(coords=[i], name='K', lower=0) # Endogenous capacity
y = m.add_variables(coords=[t, i], name='y', lower=0) # Electricity production
y_ch = m.add_variables(coords=[t, i], name='y_ch', lower=0) # Electricity consumption
l = m.add_variables(coords=[t, i], name='l', lower=0) # Storage filling level
y_curt = m.add_variables(coords=[t, i], name='y_curt', lower=0) # RES curtailment
y_h2 = m.add_variables(coords=[t, i], name='y_h2', lower=0) # H2 production
# Define Objective function
C_tot = C_op + C_inv
m.add_objective(C_tot)
# Define Constraints
# Operational costs minus revenue for produced hydrogen
m.add_constraints((y * c_fuel_i / eff_i).sum() * dt - (y_h2.sel(i=iPtG) * price_h2).sum() * dt == C_op, name='C_op_sum')
# Investment costs
m.add_constraints((K * c_inv_i).sum() == C_inv, name='C_inv_sum')
# Load serving
m.add_constraints((((y).sum(dims='i') - y_ch.sum(dims='i')) * dt == D_t.sel(t=t) * dt), name='load')
# Maximum capacity limit
m.add_constraints((y - K <= K_0_i), name='max_cap')
# Capacity limits for investment
m.add_constraints((K.sel(i=technologies_no_invest) <= 0), name='max_cap_invest')
# Prevent power production by PtG
m.add_constraints((y.sel(i=iPtG) <= 0), name='prevent_ptg_prod')
# Prevent charging for non-storage technologies
m.add_constraints((y_ch.sel(i=[x for x in i if x not in iPtG and x not in iSto]) <= 0), name='no_charging')
# Maximum storage charging and discharging
m.add_constraints((y.sel(i=iSto) + y_ch.sel(i=iSto) - K.sel(i=iSto) <= K_0_i.sel(i=iSto)), name='max_cha')
# Maximum electrolyzer capacity
m.add_constraints((y_ch.sel(i=iPtG) - K.sel(i=iPtG) <= K_0_i.sel(i=iPtG)), name='max_cha_ptg')
# PtG H2 production
m.add_constraints(y_ch.sel(i=iPtG) * eff_i.sel(i=iPtG) == y_h2.sel(i=iPtG), name='ptg_h2_prod')
# Infeed of renewables
m.add_constraints((y.sel(i=iRes) - s_t_r_iRes.sel(i=iRes).sel(t=t) * K.sel(i=iRes) + y_curt.sel(i=iRes) == s_t_r_iRes.sel(i=iRes).sel(t=t) * K_0_i.sel(i=iRes)), name='infeed')
# Maximum filling level restriction for storage power plants
m.add_constraints((l.sel(i=iSto) - K.sel(i=iSto) * e2p_iSto.sel(i=iSto) <= K_0_i.sel(i=iSto) * e2p_iSto.sel(i=iSto)), name='max_sto_filling')
# Filling level restriction for hydro reservoir
m.add_constraints(l.sel(i=iHyRes) - l.sel(i=iHyRes).roll(t=-1) + y.sel(i=iHyRes) * dt == h_t.sel(t=t) * dt, name='filling_level_hydro')
# Filling level restriction for other storages
m.add_constraints(l.sel(i=iSto) - (l.sel(i=iSto).roll(t=-1) - (y.sel(i=iSto) / eff_i.sel(i=iSto)) * dt + y_ch.sel(i=iSto) * eff_i.sel(i=iSto) * dt) == 0, name='filling_level')
# CO2 limit
m.add_constraints(((y / eff_i) * co2_factor_i * dt).sum() <= l_co2 * 1_000_000, name='CO2_limit')
# Solve the model
m.solve(solver_name='highs')
# Prepare columns for figures
colb1, colb2 = st.columns(2)
# Generate and display figures
st.markdown("---")
df_total_costs = plot_total_costs(m, colb1, df)
df_CO2_price = plot_co2_price(m, colb2, df)
plot_installed_capacities(m, K_0_i, color_dict)
df_new_capacities = plot_new_capacities(m, color_dict, colb1, df)
# Only plot production for technologies with capacity
i_with_capacity = m.solution['K'].where(m.solution['K'] > 0).dropna(dim='i').get_index('i')
df_production = plot_production(m, i_with_capacity, dt, color_dict, colb2, df)
df_price = plot_electricity_prices(m, dt, colb1, df)
df_contr_marg = plot_contribution_margin(m, dt, color_dict, colb2, df)
df_curtailment = plot_curtailment(m, iRes, color_dict, colb1, df)
df_charging = plot_storage_charging(m, iSto, color_dict, colb2, df)
df_h2_prod = plot_hydrogen_production(m, iPtG, color_dict, colb2, df)
# Export results
st.session_state.output = BytesIO()
with pd.ExcelWriter(st.session_state.output, engine='xlsxwriter') as writer:
disaggregate_df(df_total_costs, t, t_original, dt).to_excel(writer, sheet_name='Total costs', index=False)
disaggregate_df(df_CO2_price, t, t_original, dt).to_excel(writer, sheet_name='CO2 price', index=False)
disaggregate_df(df_price, t, t_original, dt).to_excel(writer, sheet_name='Prices', index=False)
disaggregate_df(df_contr_marg, t, t_original, dt).to_excel(writer, sheet_name='Contribution Margin', index=False)
disaggregate_df(df_new_capacities, t, t_original, dt).to_excel(writer, sheet_name='Capacities', index=False)
disaggregate_df(df_production, t, t_original, dt).to_excel(writer, sheet_name='Production', index=False)
disaggregate_df(df_charging, t, t_original, dt).to_excel(writer, sheet_name='Charging', index=False)
disaggregate_df(D_t.to_dataframe().reset_index(), t, t_original, dt).to_excel(writer, sheet_name='Demand', index=False)
disaggregate_df(df_curtailment, t, t_original, dt).to_excel(writer, sheet_name='Curtailment', index=False)
disaggregate_df(df_h2_prod, t, t_original, dt).to_excel(writer, sheet_name='H2 production', index=False)
st.rerun()
def timstep_aggregate(time_steps_aggregate, xr_data, t):
"""
Aggregates time steps in the data using rolling mean and selects based on step size.
"""
return xr_data.rolling(t=time_steps_aggregate).mean().sel(t=t[0::time_steps_aggregate])
# Visualization functions
def plot_installed_capacities(m, K_0_i, color_dict):
"""
Plots the total installed capacities.
"""
df_installed_cap = (m.solution['K'] + K_0_i).to_dataframe(name='K').reset_index()
fig = px.bar(df_installed_cap, y='i', x='K', orientation='h',
title='Total Installed Capacities [MW]', color='i', color_discrete_map=color_dict)
return fig
def plot_total_costs(m, col, df):
"""
Displays the total costs.
"""
total_costs = float(m.solution['C_inv'].values) + float(m.solution['C_op'].values)
total_costs_rounded = round(total_costs / 1e9, 2)
with col:
st.write(f"{df.loc['plot_label_total_costs', st.session_state.lang]} {total_costs_rounded}")
# st.write(f'Total costs: {total_costs_rounded} bn. €')
df_total_costs = pd.DataFrame({'Total costs':[total_costs]})
return df_total_costs
def plot_co2_price(m, col, df):
"""
Displays the CO2 price based on the CO2 constraint dual values.
"""
CO2_price = float(m.constraints['CO2_limit'].dual.values) * (-1)
CO2_price_rounded = round(CO2_price, 2)
df_CO2_price = pd.DataFrame({'CO2 price': [CO2_price]})
with col:
st.write(f"{df.loc['plot_label_co2_price', st.session_state.lang]} {CO2_price_rounded}")
return df_CO2_price
def plot_new_capacities(m, color_dict, col, df):
"""
Plots the new capacities installed in MW as a bar chart and pie chart.
Includes technologies with 0 MW capacity in the bar chart.
Supports both German and English labels for technologies while ensuring color consistency.
"""
# Convert the solution for new capacities to a DataFrame
df_new_capacities = m.solution['K'].round(0).to_dataframe().reset_index()
# Store the English technology names in a separate column to maintain color consistency
df_new_capacities['i_en'] = df_new_capacities['i']
# Check if the language is German and map English names to German for display
if st.session_state.lang == 'DE':
tech_mapping_en_to_de = {
df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
for tech in df_new_capacities['i_en'] if f'tech_{tech.lower()}' in df.index
}
# Replace the English technology names with German ones for display
df_new_capacities['i'] = df_new_capacities['i_en'].replace(tech_mapping_en_to_de)
# Bar plot for new capacities (including technologies with 0 MW)
fig_bar = px.bar(df_new_capacities, y='i', x='K', orientation='h',
title=df.loc['plot_label_new_capacities', st.session_state.lang],
color='i_en', # Use the English names for consistent coloring
color_discrete_map=color_dict)
# Hide the legend completely since the labels are already next to the bars
fig_bar.update_layout(showlegend=False)
with col:
st.plotly_chart(fig_bar)
# Pie chart for new capacities (only show technologies with K > 0 in pie chart)
df_new_capacities_filtered = df_new_capacities[df_new_capacities["K"] > 0]
fig_pie = px.pie(df_new_capacities_filtered, names='i', values='K',
title=df.loc['plot_label_new_capacities_pie', st.session_state.lang],
color='i_en', color_discrete_map=color_dict)
# Remove English labels (i_en) from the pie chart legend
fig_pie.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
fig_pie.for_each_trace(lambda t: t.update(name=df_new_capacities_filtered['i'].iloc[0] if st.session_state.lang == 'DE' else t.name))
with col:
st.plotly_chart(fig_pie)
return df_new_capacities
def plot_production(m, i_with_capacity, dt, color_dict, col, df):
"""
Plots the energy production for technologies with capacity as an area chart.
Supports both German and English labels for technologies while ensuring color consistency.
"""
# Convert the production data to a DataFrame
df_production = m.solution['y'].sel(i=i_with_capacity).to_dataframe().reset_index()
# Store the English technology names in a separate column to maintain color consistency
df_production['i_en'] = df_production['i']
# Check if the language is German and map English names to German for display
if st.session_state.lang == 'DE':
tech_mapping_en_to_de = {
df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
for tech in df_production['i_en'] if f'tech_{tech.lower()}' in df.index
}
# Replace the English technology names with German ones for display
df_production['i'] = df_production['i_en'].replace(tech_mapping_en_to_de)
# Area plot for energy production
fig = px.area(df_production, y='y', x='t',
title=df.loc['plot_label_production', st.session_state.lang],
color='i_en', # Use the English names for consistent coloring
color_discrete_map=color_dict)
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))
with col:
st.plotly_chart(fig)
# Pie chart for total production
df_production_sum = (df_production.groupby(['i', 'i_en'])['y'].sum() * dt / 1000).round(0).reset_index()
# If the language is set to German, display German labels, otherwise use English
pie_column = 'i' if st.session_state.lang == 'DE' else 'i_en'
# Pie chart for total production
fig_pie = px.pie(df_production_sum, names=pie_column, values='y',
title=df.loc['plot_label_total_production_pie', st.session_state.lang],
color='i_en', # Ensure the coloring stays consistent using the 'i_en' column
color_discrete_map=color_dict)
# Update legend title to reflect the correct language
fig_pie.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
with col:
st.plotly_chart(fig_pie)
return df_production
def plot_electricity_prices(m, dt, col, df):
"""
Plots the electricity price and the price duration curve.
Supports both German and English labels for the plot titles and axis labels.
"""
# Convert the dual constraints to a DataFrame
df_price = m.constraints['load'].dual.to_dataframe().reset_index()
# Line plot for electricity prices
fig_price = px.line(df_price, y='dual', x='t',
title=df.loc['plot_label_electricity_prices', st.session_state.lang],
# range_y=[0, 250],
labels={'dual': df.loc['label_electricity_price', st.session_state.lang],
't': df.loc['label_time', st.session_state.lang]})
with col:
st.plotly_chart(fig_price)
# Create the price duration curve
df_sorted_price = df_price["dual"].repeat(dt).sort_values(ascending=False).reset_index(drop=True) / int(dt)
fig_duration = px.line(y=df_sorted_price, x=df_sorted_price.index,
title=df.loc['plot_label_price_duration_curve', st.session_state.lang],
# labels={"x": df.loc['label_hours_of_year', st.session_state.lang]},
# range_y=[0, 250])
)
with col:
st.plotly_chart(fig_duration)
return df_price
def plot_contribution_margin(m, dt, color_dict, col, df):
"""
Plots the contribution margin for each technology.
Supports both German and English labels for titles and axes while ensuring color consistency.
"""
# Convert the dual constraints to a DataFrame
df_contr_marg = m.constraints['max_cap'].dual.to_dataframe().reset_index()
# Adjust the 'dual' values for the contribution margin calculation
df_contr_marg['dual'] = df_contr_marg['dual'] / dt * (-1)
# Store the English technology names in a separate column to maintain color consistency
df_contr_marg['i_en'] = df_contr_marg['i']
# Check if the language is German and map English names to German for display
if st.session_state.lang == 'DE':
tech_mapping_en_to_de = {
df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
for tech in df_contr_marg['i_en'] if f'tech_{tech.lower()}' in df.index
}
# Replace the English technology names with German ones for display
df_contr_marg['i'] = df_contr_marg['i_en'].replace(tech_mapping_en_to_de)
# Plot contribution margin for each technology
fig = px.line(df_contr_marg, y='dual', x='t',
title=df.loc['plot_label_contribution_margin', st.session_state.lang],
color='i_en', # Use the English names for consistent coloring
range_y=[0, 250], color_discrete_map=color_dict,
# labels={
# 'dual': df.loc['label_contribution_margin', st.session_state.lang],
# 't': df.loc['label_time', st.session_state.lang],
# 'i_en': df.loc['label_technology', st.session_state.lang]
# }
)
# Update legend to display the correct language
fig.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
# For German language, update the legend to show German technology names
if st.session_state.lang == 'DE':
fig.for_each_trace(lambda t: t.update(name=df_contr_marg.loc[df_contr_marg['i_en'] == t.name, 'i'].values[0]))
# Display the plot
with col:
st.plotly_chart(fig)
return df_contr_marg
def plot_curtailment(m, iRes, color_dict, col, df):
"""
Plots the curtailment of renewable energy.
Supports both German and English labels for titles and axes while ensuring color consistency.
"""
# Convert the curtailment solution to a DataFrame
df_curtailment = m.solution['y_curt'].sel(i=iRes).to_dataframe().reset_index()
# Store the English technology names in a separate column to maintain color consistency
df_curtailment['i_en'] = df_curtailment['i']
# Check if the language is German and map English names to German for display
if st.session_state.lang == 'DE':
tech_mapping_en_to_de = {
df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
for tech in df_curtailment['i_en'] if f'tech_{tech.lower()}' in df.index
}
# Replace the English technology names with German ones for display
df_curtailment['i'] = df_curtailment['i_en'].replace(tech_mapping_en_to_de)
else:
df_curtailment['i'] = df_curtailment['i_en'] # Use English names if not German
# Area plot for curtailment of renewable energy
fig = px.area(df_curtailment, y='y_curt', x='t',
title=df.loc['plot_label_curtailment', st.session_state.lang],
color='i_en', # Use the English names for consistent coloring
color_discrete_map=color_dict)
# Remove line traces and use fill colors for the area plot
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))
# Update the legend title to reflect the correct language (German or English)
fig.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
# For German language, update the legend to show German technology names
if st.session_state.lang == 'DE':
fig.for_each_trace(lambda t: t.update(name=df_curtailment.loc[df_curtailment['i_en'] == t.name, 'i'].values[0]))
# Display the plot
with col:
st.plotly_chart(fig)
return df_curtailment
def plot_storage_charging(m, iSto, color_dict, col, df):
"""
Plots the charging of storage technologies.
Supports both German and English labels for titles and axes while ensuring color consistency.
"""
# Convert the storage charging solution to a DataFrame
df_charging = m.solution['y_ch'].sel(i=iSto).to_dataframe().reset_index()
# Store the English technology names in a separate column to maintain color consistency
df_charging['i_en'] = df_charging['i']
# Check if the language is German and map English names to German for display
if st.session_state.lang == 'DE':
tech_mapping_en_to_de = {
df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
for tech in df_charging['i_en'] if f'tech_{tech.lower()}' in df.index
}
# Replace the English technology names with German ones for display
df_charging['i'] = df_charging['i_en'].replace(tech_mapping_en_to_de)
else:
df_charging['i'] = df_charging['i_en'] # Use English names if not German
# Area plot for storage charging
fig = px.area(df_charging, y='y_ch', x='t',
title=df.loc['plot_label_storage_charging', st.session_state.lang],
color='i_en', # Use the English names for consistent coloring
color_discrete_map=color_dict)
# Remove line traces and use fill colors for the area plot
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))
# Update the legend title to reflect the correct language (German or English)
fig.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
# For German language, update the legend to show German technology names
if st.session_state.lang == 'DE':
fig.for_each_trace(lambda t: t.update(name=df_charging.loc[df_charging['i_en'] == t.name, 'i'].values[0]))
# Display the plot
with col:
st.plotly_chart(fig)
return df_charging
def plot_hydrogen_production(m, iPtG, color_dict, col, df):
"""
Plots the hydrogen production.
Supports both German and English labels for titles and axes while ensuring color consistency.
"""
# Convert the hydrogen production data to a DataFrame
df_h2_prod = m.solution['y_h2'].sel(i=iPtG).to_dataframe().reset_index()
# Store the English technology names in a separate column to maintain color consistency
df_h2_prod['i_en'] = df_h2_prod['i']
# Check if the language is German and map English names to German for display
if st.session_state.lang == 'DE':
tech_mapping_en_to_de = {
df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
for tech in df_h2_prod['i_en'] if f'tech_{tech.lower()}' in df.index
}
# Replace the English technology names with German ones for display
df_h2_prod['i'] = df_h2_prod['i_en'].replace(tech_mapping_en_to_de)
else:
df_h2_prod['i'] = df_h2_prod['i_en'] # Keep English names if not German
# Area plot for hydrogen production
fig = px.area(df_h2_prod, y='y_h2', x='t',
title=df.loc['plot_label_hydrogen_production', st.session_state.lang],
color='i_en', # Use the English names for consistent coloring
color_discrete_map=color_dict)
# Remove line traces and use fill colors for the area plot
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))
# Update the legend title to reflect the correct language (German or English)
fig.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
# For German language, update the legend to show German technology names
if st.session_state.lang == 'DE':
fig.for_each_trace(lambda t: t.update(name=df_h2_prod.loc[df_h2_prod['i_en'] == t.name, 'i'].values[0]))
# Display the plot
with col:
st.plotly_chart(fig)
return df_h2_prod
def disaggregate_df(df, t, t_original, dt):
"""
Disaggregates the DataFrame based on the original time steps.
"""
if "t" not in list(df.columns):
return df
df_t_all = pd.DataFrame({"t_all": t_original.to_series(), 't': t.repeat(dt)}).reset_index(drop=True)
df_output = df.merge(df_t_all, on='t').drop('t', axis=1).rename({'t_all': 't'}, axis=1)
df_output = df_output[[df_output.columns[-1]] + list(df_output.columns[:-1])]
return df_output.sort_values('t')
if __name__ == "__main__":
main() |