ewlya commited on
Commit
53c7b1e
·
verified ·
1 Parent(s): 7ddd7c7

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -3
app.py CHANGED
@@ -599,7 +599,7 @@ def page_model(): #, write_pickle_from_standard_excel, color_dict):
599
  df_production = plot_production(m, i_with_capacity, dt, color_dict, colb2, df)
600
  # df_price = plot_electricity_prices(m, dt, colb2, df)
601
  df_curtailment = plot_curtailment(m, iRes, color_dict, colb1, df)
602
- df_residual_load_duration = plot_residual_load_duration(m, dt, colb1, df, D_t, i_with_capacity, iRes, color_dict, df_curtailment)
603
  df_price = plot_electricity_prices(m, dt, colb2, df, df_residual_load_duration)
604
 
605
  df_contr_marg = plot_contribution_margin(m, dt, i_with_capacity, color_dict, colb1, df)
@@ -897,7 +897,7 @@ def plot_electricity_prices(m, dt, col, df, df_residual_load_duration):
897
 
898
  return df_price
899
 
900
- def plot_residual_load_duration(m, dt, col, df, D_t, i_with_capacity, iRes, color_dict, df_curtailment):
901
  """
902
  Plots the residual load and corresponding production as a stacked area chart.
903
  Supports both German and English labels for the plot titles and axis labels.
@@ -961,9 +961,19 @@ def plot_residual_load_duration(m, dt, col, df, D_t, i_with_capacity, iRes, colo
961
 
962
  # Plotting with Plotly - Creating stacked area chart
963
  fig = go.Figure()
 
 
 
 
 
 
 
 
 
 
964
 
965
  # Add stacked area traces for each production technology with consistent colors and language-specific names
966
- for tech in technology_columns:
967
  tech_name = tech_mapping_en_to_de.get(tech, tech) # Get the translated name or fallback to the original
968
  fig.add_trace(go.Scatter(
969
  x=df_sorted.index,
 
599
  df_production = plot_production(m, i_with_capacity, dt, color_dict, colb2, df)
600
  # df_price = plot_electricity_prices(m, dt, colb2, df)
601
  df_curtailment = plot_curtailment(m, iRes, color_dict, colb1, df)
602
+ df_residual_load_duration = plot_residual_load_duration(m, dt, colb1, df, D_t, i_with_capacity, iRes, color_dict, df_curtailment, iConv)
603
  df_price = plot_electricity_prices(m, dt, colb2, df, df_residual_load_duration)
604
 
605
  df_contr_marg = plot_contribution_margin(m, dt, i_with_capacity, color_dict, colb1, df)
 
897
 
898
  return df_price
899
 
900
+ def plot_residual_load_duration(m, dt, col, df, D_t, i_with_capacity, iRes, color_dict, df_curtailment, iConv):
901
  """
902
  Plots the residual load and corresponding production as a stacked area chart.
903
  Supports both German and English labels for the plot titles and axis labels.
 
961
 
962
  # Plotting with Plotly - Creating stacked area chart
963
  fig = go.Figure()
964
+
965
+ # Sort technology_columns based on the highest index in df_sorted (only for iConv); others are placed at the end
966
+ sorted_technology_columns = sorted(
967
+ technology_columns,
968
+ key=lambda tech: (
969
+ tech not in iConv, # Place non-iConv technologies at the end
970
+ -df_sorted[df_sorted[tech] != 0].index.max() if tech in iConv and not df_sorted[df_sorted[tech] != 0].empty else float('inf')
971
+ )
972
+ )
973
+
974
 
975
  # Add stacked area traces for each production technology with consistent colors and language-specific names
976
+ for tech in sorted_technology_columns:
977
  tech_name = tech_mapping_en_to_de.get(tech, tech) # Get the translated name or fallback to the original
978
  fig.add_trace(go.Scatter(
979
  x=df_sorted.index,