diff --git "a/app.py" "b/app.py"
--- "a/app.py"
+++ "b/app.py"
@@ -1,1237 +1,1241 @@
-# -*- coding: utf-8 -*-
-"""
-Energy system optimization model / Investment model
-
-HEMF EWL: Christopher Jahns, Julian Radek, Hendrik Kramer, Cornelia Klüter, Yannik Pflugfelder
-"""
-
-import numpy as np
-import pandas as pd
-import xarray as xr
-import plotly.express as px
-import plotly.graph_objects as go
-import streamlit as st
-from io import BytesIO
-import xlsxwriter
-from linopy import Model
-import sourced as src
-import time
-
-
-# Main function to run the Streamlit app
-def main():
- """
- Main function to set up and solve the energy system optimization model, and handle user inputs and outputs.
- """
- setup_page()
-
- settings = load_settings()
-
- # fill session space with variables that are needed on all pages
- if 'settings' not in st.session_state:
- st.session_state.df = load_settings()
- st.session_state.settings = settings
-
- if 'url_excel' not in st.session_state:
- st.session_state.url_excel = None
-
- if 'ui_model' not in st.session_state:
- st.session_state.url_excel = None
-
- if 'output' not in st.session_state:
- st.session_state.output = BytesIO()
-
-
- setup_sidebar(st.session_state.settings["df"])
-
-
-
- # # Navigation
- # pg = st.navigation([st.Page(page_model, title=st.session_state.settings["df"].loc['menu_modell',st.session_state.lang], icon="📊"),
- # st.Page(page_documentation, title=st.session_state.settings["df"].loc['menu_doku',st.session_state.lang], icon="📓"),
- # st.Page(page_about_us, title=st.session_state.settings["df"].loc['menu_impressum',st.session_state.lang], icon="💬")],
- # expanded=True)
-
- # # # Run the app
- # pg.run()
-
- # Create tabs for navigation
- tabs = st.tabs([
- st.session_state.settings["df"].loc['menu_modell', st.session_state.lang],
- st.session_state.settings["df"].loc['menu_doku', st.session_state.lang],
- st.session_state.settings["df"].loc['menu_impressum', st.session_state.lang]
- ])
-
- # Load and display content based on the selected tab
- with tabs[0]: # Model page
- page_model()
- with tabs[1]: # Documentation page
- page_documentation()
- with tabs[2]: # About Us page
- page_about_us()
-
-
-
-
-# Load settings and initial configurations
-def load_settings():
- """
- Load settings for the app, including colors and language information.
- """
- settings = {
- 'write_pickle_from_standard_excel': True,
- 'df': pd.read_csv("language.csv", encoding="iso-8859-1", index_col="Label", sep=";"),
- 'color_dict': {
- 'Biomass': 'lightgreen',
- 'Lignite': 'brown',
- 'Fossil Gas': 'grey',
- 'Fossil Hard coal': 'darkgrey',
- 'Fossil Oil': 'maroon',
- 'RoR': 'aquamarine',
- 'Hydro Water Reservoir': 'azure',
- 'Nuclear': 'orange',
- 'PV': 'yellow',
- 'WindOff': 'darkblue',
- 'WindOn': 'green',
- 'H2': 'crimson',
- 'Pumped Hydro Storage': 'lightblue',
- 'Battery storages': 'red',
- 'Electrolyzer': 'olive'
- },
- 'colors': {
- 'hemf_blau_dunkel': "#00386c",
- 'hemf_blau_hell': "#00529f",
- 'hemf_rot_dunkel': "#8b310d",
- 'hemf_rot_hell': "#d04119",
- 'hemf_grau': "#dadada"
- }
- }
- return settings
-
-# Initialize Streamlit app
-def setup_page():
- """
- Set up the Streamlit page with a specific layout, title, and favicon.
- """
- st.set_page_config(layout="wide", page_title="Investment tool", page_icon="media/favicon.ico", initial_sidebar_state="expanded")
-
-
-# Sidebar for language and links
-def setup_sidebar(df):
- """
- Set up the sidebar with language options and external links.
- """
- st.session_state.lang = st.sidebar.selectbox("Language", ["🇬🇧 EN", "🇩🇪 DE"], key="foo", label_visibility="collapsed")[-2:]
-
- st.sidebar.markdown("""
-
- """, unsafe_allow_html=True)
-
- with st.sidebar:
- left_co, cent_co, last_co = st.columns([0.1, 0.8, 0.1])
- with cent_co:
- st.text(" ") # add vertical empty space
- ""+df.loc['menu_text', st.session_state.lang]
- st.text(" ") # add vertical empty space
-
- if st.session_state.lang == "DE":
- st.write("Schaue vorbei beim")
- st.markdown(r'[Lehrstuhl für Energiewirtschaft](https://www.ewl.wiwi.uni-due.de)', unsafe_allow_html=True)
- elif st.session_state.lang == "EN":
- st.write("Get in touch with the")
- st.markdown(r'[Chair of Management Science and Energy Economics](https://www.ewl.wiwi.uni-due.de/en)', unsafe_allow_html=True)
-
- st.text(" ") # add vertical empty space
- st.image("media/Logo_HEMF.svg", width=200)
- st.image("media/Logo_UDE.svg", width=200)
-
-
-# Load model input data
-def load_model_input(df, write_pickle_from_standard_excel):
- """
- Load model input data from Excel or Pickle based on user input.
- """
- if st.session_state.url_excel is None:
- if write_pickle_from_standard_excel:
- url_excel = r'Input_Jahr_2023.xlsx'
- sets_dict, params_dict = src.load_data_from_excel(url_excel, write_to_pickle_flag=True)
- sets_dict, params_dict = src.load_from_pickle()
- #st.write(df.loc['model_title1.1', st.session_state.lang])
- # st.write('Running with standard data')
- else:
- url_excel = st.session_state.url_excel
- sets_dict, params_dict = src.load_data_from_excel(url_excel, load_from_pickle_flag=False)
- st.write(df.loc['model_title1.2', st.session_state.lang])
-
- return sets_dict, params_dict
-
-
-
-def page_documentation():
- """
- Display documentation and mathematical model details.
- """
-
- df = st.session_state.settings["df"]
-
- st.header(df.loc['constr_header1', st.session_state.lang])
- st.write(df.loc['constr_header2', st.session_state.lang])
-
- col1, col2 = st.columns([6, 4])
-
- with col1:
- st.header(df.loc['constr_header3', st.session_state.lang])
-
- with st.container():
-
- # Objective function
- st.subheader(df.loc['constr_subheader_obj_func', st.session_state.lang])
- st.write(df.loc['constr_subheader_obj_func_descr', st.session_state.lang])
- st.latex(r''' \text{min } C^{tot} = C^{op} + C^{inv}''')
-
- # Operational costs minus revenue for produced hydrogen
- st.write(df.loc['constr_c_op', st.session_state.lang])
- st.latex(r''' C^{op} = \sum_{i} y_{t,i} \cdot \left( \frac{c^{fuel}_{i}}{\eta_i} + c_{i}^{other} \right) \cdot \Delta t - \sum_{i \in \mathcal{I}^{PtG}} y^{h2}_{t,i} \cdot p^{h2} \cdot \Delta t''')
-
- # Investment costs
- st.write(df.loc['constr_c_inv', st.session_state.lang])
- st.latex(r''' C^{inv} = \sum_{i} a_{i} \cdot K_{i} \cdot c^{inv}_{i}''')
-
- # Constraints
- st.subheader(df.loc['subheader_constr', st.session_state.lang])
-
- # Load-serving constraint
- st.write(df.loc['constr_load_serve', st.session_state.lang])
- st.latex(r''' \left( \sum_{i} y_{t,i} - \sum_{i} y_{t,i}^{ch} \right) \cdot \Delta t = D_t \cdot \Delta t, \quad \forall t \in \mathcal{T}''')
-
- # Maximum capacity limit
- st.write(df.loc['constr_max_cap', st.session_state.lang])
- st.latex(r''' y_{t,i} - K_{i} \leq K_{0,i}, \quad \forall i \in \mathcal{I}''')
-
- # Capacity limits for investment
- st.write(df.loc['constr_inv_cap', st.session_state.lang])
- st.latex(r''' K_{i} \leq 0, \quad \forall i \in \mathcal{I}^{no\_invest}''')
-
- # Prevent power production by PtG
- st.write(df.loc['constr_prevent_ptg', st.session_state.lang])
- st.latex(r''' y_{t,i} = 0, \quad \forall i \in \mathcal{I}^{PtG}''')
-
- # Prevent charging for non-storage technologies
- st.write(df.loc['constr_prevent_chg', st.session_state.lang])
- st.latex(r''' y_{t,i}^{ch} = 0, \quad \forall i \in \mathcal{I} \setminus \{ \mathcal{I}^{PtG} \cup \mathcal{I}^{Sto} \}''')
-
- # Maximum storage charging and discharging
- st.write(df.loc['constr_max_chg', st.session_state.lang])
- st.latex(r''' y_{t,i} + y_{t,i}^{ch} - K_{i} \leq K_{0,i}, \quad \forall i \in \mathcal{I}^{Sto}''')
-
- # Maximum electrolyzer capacity
- st.write(df.loc['constr_max_cap_electrolyzer', st.session_state.lang])
- st.latex(r''' y_{t,i}^{ch} - K_{i} \leq K_{0,i}, \quad \forall i \in \mathcal{I}^{PtG}''')
-
- # PtG H2 production
- st.write(df.loc['constr_prod_ptg', st.session_state.lang])
- st.latex(r''' y_{t,i}^{ch} \cdot \eta_i = y_{t,i}^{h2}, \quad \forall i \in \mathcal{I}^{PtG}''')
-
- # Infeed of renewables
- st.write(df.loc['constr_inf_res', st.session_state.lang])
- st.latex(r''' y_{t,i} + y_{t,i}^{curt} = s_{t,r,i} \cdot (K_{0,i} + K_i), \quad \forall i \in \mathcal{I}^{Res}''')
-
- # Maximum filling level restriction for storage power plants
- st.write(df.loc['constr_max_fil_sto', st.session_state.lang])
- # st.latex(r''' l_{t,i} \leq K_{0,i} \cdot e2p_i, \quad \forall i \in \mathcal{I}^{Sto}''')
- st.latex(r''' l_{t,i} \leq (K_{0,i} + K_{i}) \cdot \gamma_i^{Sto}, \quad \forall i \in \mathcal{I}^{Sto}''')
-
- # Filling level restriction for hydro reservoir
- st.write(df.loc['constr_fil_hyres', st.session_state.lang])
- st.latex(r''' l_{t+1,i} = l_{t,i} + ( h_{t,i} - y_{t,i}) \cdot \Delta t, \quad \forall i \in \mathcal{I}^{HyRes}''')
-
- # Filling level restriction for other storages
- st.write(df.loc['constr_fil_sto', st.session_state.lang])
- st.latex(r''' l_{t+1,i} = l_{t,i} - \left(\frac{y_{t,i}}{\eta_i} - y_{t,i}^{ch} \cdot \eta_i \right) \cdot \Delta t, \quad \forall i \in \mathcal{I}^{Sto}''')
-
- # CO2 emission constraint
- st.write(df.loc['constr_co2_lim', st.session_state.lang])
- st.latex(r''' \sum_{t} \sum_{i} \frac{y_{t,i}}{\eta_i} \cdot \chi^{CO2}_i \cdot \Delta t \leq L^{CO2}''')
-
-
- with col2:
-
- symbols_container = st.container()
- with symbols_container:
- st.header(df.loc['symb_header1', st.session_state.lang])
- st.write(df.loc['symb_header2', st.session_state.lang])
-
- st.subheader(df.loc['symb_header_sets', st.session_state.lang])
- st.write(f"$\mathcal{{T}}$: {df.loc['symb_time_steps', st.session_state.lang]}")
- st.write(f"$\mathcal{{I}}$: {df.loc['symb_tech', st.session_state.lang]}")
- st.write(f"$\mathcal{{I}}^{{\\text{{Sto}}}}$: {df.loc['symb_sto_tech', st.session_state.lang]}")
- st.write(f"$\mathcal{{I}}^{{\\text{{Conv}}}}$: {df.loc['symb_conv_tech', st.session_state.lang]}")
- st.write(f"$\mathcal{{I}}^{{\\text{{PtG}}}}$: {df.loc['symb_ptg', st.session_state.lang]}")
- st.write(f"$\mathcal{{I}}^{{\\text{{Res}}}}$: {df.loc['symb_res', st.session_state.lang]}")
- st.write(f"$\mathcal{{I}}^{{\\text{{HyRes}}}}$: {df.loc['symb_hyres', st.session_state.lang]}")
- st.write(f"$\mathcal{{I}}^{{\\text{{no\_invest}}}}$: {df.loc['symb_no_inv', st.session_state.lang]}")
-
-
-
- # Variables section
- st.subheader(df.loc['symb_header_variables', st.session_state.lang])
- st.write(f"$C^{{tot}}$: {df.loc['symb_tot_costs', st.session_state.lang]}")
- st.write(f"$C^{{op}}$: {df.loc['symb_c_op', st.session_state.lang]}")
- st.write(f"$C^{{inv}}$: {df.loc['symb_c_inv', st.session_state.lang]}")
- st.write(f"$K_i$: {df.loc['symb_inst_cap', st.session_state.lang]}")
- st.write(f"$y_{{t,i}}$: {df.loc['symb_el_prod', st.session_state.lang]}")
- st.write(f"$y_{{t, i}}^{{ch}}$: {df.loc['symb_el_ch', st.session_state.lang]}")
- st.write(f"$l_{{t,i}}$: {df.loc['symb_sto_fil', st.session_state.lang]}")
- st.write(f"$y_{{t, i}}^{{curt}}$: {df.loc['symb_curt', st.session_state.lang]}")
- st.write(f"$y_{{t, i}}^{{h2}}$: {df.loc['symb_h2_ptg', st.session_state.lang]}")
-
-
- # Parameters section
- st.subheader(df.loc['symb_header_parameters', st.session_state.lang])
- st.write(f"$D_t$: {df.loc['symb_energy_demand', st.session_state.lang]}")
- st.write(f"$p^{{h2}}$: {df.loc['symb_price_h2', st.session_state.lang]}")
- st.write(f"$c^{{fuel}}_{{i}}$: {df.loc['symb_fuel_costs', st.session_state.lang]}")
- st.write(f"$c_{{i}}^{{other}}$: {df.loc['symb_c_op_other', st.session_state.lang]}")
- st.write(f"$c^{{inv}}_{{i}}$: {df.loc['symb_c_inv_tech', st.session_state.lang]}")
- st.write(f"$a_{{i}}$: {df.loc['symb_annuity', st.session_state.lang]}")
- st.write(f"$\eta_i$: {df.loc['symb_eff_fac', st.session_state.lang]}")
- st.write(f"$K_{{0,i}}$: {df.loc['symb_max_cap_tech', st.session_state.lang]}")
- st.write(f"$\chi^{{CO2}}_i$: {df.loc['symb_co2_fac', st.session_state.lang]}")
- st.write(f"$L^{{CO2}}$: {df.loc['symb_co2_limit', st.session_state.lang]}")
- # st.write(f"$e2p_{{\\text{{Sto}}, i}}$: {df.loc['symb_etp', st.session_state.lang]}")
- st.write(f"$\gamma^{{\\text{{Sto}}}}_{{i}}$: {df.loc['symb_etp', st.session_state.lang]}")
- st.write(f"$s_{{t, r, i}}$: {df.loc['symb_res_supply', st.session_state.lang]}")
- st.write(f"$h_{{t, i}}$: {df.loc['symb_hyRes_inflow', st.session_state.lang]}")
-
- # css = float_css_helper(top="50")
- # symbols_container.float(css)
-
-
-def page_about_us():
- """
- Display information about the team and the project.
- """
- st.write("About Us/Impressum")
-
-
-def page_model(): #, write_pickle_from_standard_excel, color_dict):
- """
- Display the main model page for energy system optimization.
-
- This function sets up the user interface for the model input parameters, loads data, and configures the
- optimization model before solving it and presenting the results.
- """
-
- df = st.session_state.settings["df"]
- color_dict = st.session_state.settings["color_dict"]
- write_pickle_from_standard_excel = st.session_state.settings["write_pickle_from_standard_excel"]
-
-
-
-
- # Load data from Excel or Pickle
- sets_dict, params_dict = load_model_input(df, write_pickle_from_standard_excel)
-
- # Unpack sets_dict into the workspace
- t = sets_dict['t']
- t_original = sets_dict['t']
- i = sets_dict['i']
- iSto = sets_dict['iSto']
- iConv = sets_dict['iConv']
- iPtG = sets_dict['iPtG']
- iRes = sets_dict['iRes']
- iHyRes = sets_dict['iHyRes']
-
- # Unpack params_dict into the workspace
- l_co2 = params_dict['l_co2']
- p_co2 = params_dict['p_co2']
- eff_i = params_dict['eff_i']
- life_i = params_dict['life_i']
- c_fuel_i = params_dict['c_fuel_i']
- c_other_i = params_dict['c_other_i']
- c_inv_i = params_dict['c_inv_i']
- co2_factor_i = params_dict['co2_factor_i']
- K_0_i = params_dict['K_0_i']
- e2p_iSto = params_dict['e2p_iSto']
-
- # Adjust efficiency for storage technologies
- eff_i.loc[iSto] = np.sqrt(eff_i.loc[iSto]) # Apply square root to cycle efficiency for storage technologies
-
- # Create columns for UI layout
- col1, col2 = st.columns([0.30, 0.70], gap="large")
-
- # Load input data
- with col1:
-
- st.title(df.loc['model_title1', st.session_state.lang])
-
- with open('Input_Jahr_2023.xlsx', 'rb') as f:
- st.download_button(df.loc['model_title1.3',st.session_state.lang], f, file_name='Input_Jahr_2023.xlsx') # Download button for Excel template
-
- with st.form("input_file"):
-
-
- st.session_state.url_excel = st.file_uploader(label=df.loc['model_title1.4',st.session_state.lang]) # File uploader for user Excel file
-
- #st.title(df.loc['model_title4', st.session_state.lang])
-
- run_model_excel = st.form_submit_button(df.loc['model_run_info_excel', st.session_state.lang]) #, key="run_model_button", help=df.loc['run_model_button_info',st.session_state.lang])
- #else:
- # run_model = st.button(df.loc['model_run_info_gui', st.session_state.lang], key="run_model_button", help=df.loc['run_model_button_info',st.session_state.lang])
-
-
-
-
-
- # Set up user interface for parameters
- with col2:
-
- st.title(df.loc['model_title3', st.session_state.lang])
-
-
-
- with st.form("input_custom"):
-
- col1form, col2form, col3form = st.columns([0.25, 0.25, 0.50])
-
- # colum 1 form
- l_co2 = col1form.slider(value=int(params_dict['l_co2']), min_value=0, max_value=750, label=df.loc['model_label_co2',st.session_state.lang], step=50)
- price_h2 = col1form.slider(value=100, min_value=0, max_value=300, label=df.loc['model_label_h2',st.session_state.lang], step=10)
- for i_idx in params_dict['c_fuel_i'].get_index('i'):
- if i_idx in ['Lignite']:
- params_dict['c_fuel_i'].loc[i_idx] = col1form.slider(value=int(params_dict['c_fuel_i'].loc[i_idx]),
- min_value=0, max_value=300, label=df.loc[f'model_label_{i_idx}',st.session_state.lang], step=10)
-
- # colum 1 form
- for i_idx in params_dict['c_fuel_i'].get_index('i'):
- if i_idx in ['Fossil Hard coal', 'Fossil Oil', 'Fossil Gas']:
- params_dict['c_fuel_i'].loc[i_idx] = col2form.slider(value=int(params_dict['c_fuel_i'].loc[i_idx]),
- min_value=0, max_value=300, label=df.loc[f'model_label_{i_idx}',st.session_state.lang], step=10)
-
- # Create a dictionary to map German names to English names
- tech_mapping_de_to_en = {
- df.loc[f'tech_{tech.lower()}', 'DE']: df.loc[f'tech_{tech.lower()}', 'EN']
- for tech in sets_dict['i'] if f'tech_{tech.lower()}' in df.index
- }
-
- # Set options and default values based on the selected language
- if st.session_state.lang == 'DE':
- # German options for the user interface
- options = [
- df.loc[f'tech_{tech.lower()}', 'DE'] for tech in sets_dict['i'] if f'tech_{tech.lower()}' in df.index
- ]
- default = [
- df.loc[f'tech_{tech.lower()}', 'DE'] for tech in ['Lignite', 'Fossil Gas', 'Fossil Hard coal', 'Fossil Oil', 'PV', 'WindOff', 'WindOn', 'H2', 'Pumped Hydro Storage', 'Battery storages', 'Electrolyzer']
- if f'tech_{tech.lower()}' in df.index
- ]
- else:
- # English options for the user interface
- options = sets_dict['i']
- default = ['Lignite', 'Fossil Gas', 'Fossil Hard coal', 'Fossil Oil', 'PV', 'WindOff', 'WindOn', 'H2', 'Pumped Hydro Storage', 'Battery storages', 'Electrolyzer']
-
- # Multiselect for technology options in the user interface
- selected_technologies = col3form.multiselect(
- label=df.loc['model_label_tech', st.session_state.lang],
- options=options,
- default=[tech for tech in default if tech in options]
- )
-
- # If language is German, map selected German names back to their English equivalents
- if st.session_state.lang == 'DE':
- technologies_invest = [tech_mapping_de_to_en[tech] for tech in selected_technologies]
- else:
- technologies_invest = selected_technologies
-
- # Technologies that will not be invested in (based on English names)
- technologies_no_invest = [tech for tech in sets_dict['i'] if tech not in technologies_invest]
-
- col4form, col5form = st.columns([0.25, 0.75])
- dt = col4form.number_input(label=df.loc['model_label_t',st.session_state.lang], min_value=1, max_value=len(t), value=6,
- help=df.loc['model_label_t_info',st.session_state.lang])
-
- run_model_manual = col5form.form_submit_button(df.loc['model_run_info_gui', st.session_state.lang])
-
- #run_model = st.button(df.loc['model_run_info_gui', st.session_state.lang], key="run_model_button", help=df.loc['run_model_button_info',st.session_state.lang])
-
- st.markdown("-------")
-
- # run_model_manual = True
-
- if run_model_excel or run_model_manual:
- # Model setup
-
- info_yellow_build = st.info(df.loc['label_build_model', st.session_state.lang])
-
-
- if run_model_excel: # overwrite with excel values
- #sets_dict, params_dict = load_model_input(df, write_pickle_from_standard_excel)
- sets_dict, params_dict = src.load_data_from_excel(st.session_state.url_excel, write_to_pickle_flag=True)
-
- # Unpack sets_dict into the workspace
- t = sets_dict['t']
- t_original = sets_dict['t']
- i = sets_dict['i']
- iSto = sets_dict['iSto']
- iConv = sets_dict['iConv']
- iPtG = sets_dict['iPtG']
- iRes = sets_dict['iRes']
- iHyRes = sets_dict['iHyRes']
-
- # Unpack params_dict into the workspace
- l_co2 = params_dict['l_co2']
- p_co2 = params_dict['p_co2']
- eff_i = params_dict['eff_i']
- # life_i = params_dict['life_i']
- c_fuel_i = params_dict['c_fuel_i']
- c_other_i = params_dict['c_other_i']
- c_inv_i = params_dict['c_inv_i']
- co2_factor_i = params_dict['co2_factor_i']
- K_0_i = params_dict['K_0_i']
- e2p_iSto = params_dict['e2p_iSto']
-
- # Adjust efficiency for storage technologies
- eff_i.loc[iSto] = np.sqrt(eff_i.loc[iSto]) # Apply square root to cycle efficiency for storage technologies
-
-
- # Time series aggregation for various parameters
- D_t = timstep_aggregate(dt, params_dict['D_t'], t)
- s_t_r_iRes = timstep_aggregate(dt, params_dict['s_t_r_iRes'], t)
- h_t = timstep_aggregate(dt, params_dict['h_t'], t)
- t = D_t.get_index('t')
- partial_year_factor = (8760 / len(t)) / dt
-
- m = Model()
-
- # Define Variables
- C_tot = m.add_variables(name='C_tot') # Total costs
- C_op = m.add_variables(name='C_op', lower=0) # Operational costs
- C_inv = m.add_variables(name='C_inv', lower=0) # Investment costs
- K = m.add_variables(coords=[i], name='K', lower=0) # Endogenous capacity
- y = m.add_variables(coords=[t, i], name='y', lower=0) # Electricity production
- y_ch = m.add_variables(coords=[t, i], name='y_ch', lower=0) # Electricity consumption
- l = m.add_variables(coords=[t, i], name='l', lower=0) # Storage filling level
- y_curt = m.add_variables(coords=[t, i], name='y_curt', lower=0) # RES curtailment
- y_h2 = m.add_variables(coords=[t, i], name='y_h2', lower=0) # H2 production
-
- # Define Objective function
- C_tot = C_op + C_inv
- m.add_objective(C_tot)
-
- # Define Constraints
- # Operational costs minus revenue for produced hydrogen
- m.add_constraints((y * c_fuel_i / eff_i).sum() * dt - (y_h2.sel(i=iPtG) * price_h2).sum() * dt == C_op, name='C_op_sum')
-
- # Investment costs
- m.add_constraints((K * c_inv_i).sum() == C_inv, name='C_inv_sum')
-
- # Load serving
- m.add_constraints((((y).sum(dims='i') - y_ch.sum(dims='i')) * dt == D_t.sel(t=t) * dt), name='load')
-
- # Maximum capacity limit
- m.add_constraints((y - K <= K_0_i), name='max_cap')
-
- # Capacity limits for investment
- m.add_constraints((K.sel(i=technologies_no_invest) <= 0), name='max_cap_invest')
-
- # Prevent power production by PtG
- m.add_constraints((y.sel(i=iPtG) <= 0), name='prevent_ptg_prod')
-
- # Prevent charging for non-storage technologies
- m.add_constraints((y_ch.sel(i=[x for x in i if x not in iPtG and x not in iSto]) <= 0), name='no_charging')
-
- # Maximum storage charging and discharging
- m.add_constraints((y.sel(i=iSto) + y_ch.sel(i=iSto) - K.sel(i=iSto) <= K_0_i.sel(i=iSto)), name='max_cha')
-
- # Maximum electrolyzer capacity
- m.add_constraints((y_ch.sel(i=iPtG) - K.sel(i=iPtG) <= K_0_i.sel(i=iPtG)), name='max_cha_ptg')
-
- # PtG H2 production
- m.add_constraints(y_ch.sel(i=iPtG) * eff_i.sel(i=iPtG) == y_h2.sel(i=iPtG), name='ptg_h2_prod')
-
- # Infeed of renewables
- m.add_constraints((y.sel(i=iRes) - s_t_r_iRes.sel(i=iRes).sel(t=t) * K.sel(i=iRes) + y_curt.sel(i=iRes) == s_t_r_iRes.sel(i=iRes).sel(t=t) * K_0_i.sel(i=iRes)), name='infeed')
-
- # Maximum filling level restriction for storage power plants
- m.add_constraints((l.sel(i=iSto) - K.sel(i=iSto) * e2p_iSto.sel(i=iSto) <= K_0_i.sel(i=iSto) * e2p_iSto.sel(i=iSto)), name='max_sto_filling')
-
- # Filling level restriction for hydro reservoir
- m.add_constraints(l.sel(i=iHyRes) - l.sel(i=iHyRes).roll(t=-1) + y.sel(i=iHyRes) * dt == h_t.sel(t=t) * dt, name='filling_level_hydro')
-
- # Filling level restriction for other storages
- m.add_constraints(l.sel(i=iSto) - (l.sel(i=iSto).roll(t=-1) - (y.sel(i=iSto) / eff_i.sel(i=iSto)) * dt + y_ch.sel(i=iSto) * eff_i.sel(i=iSto) * dt) == 0, name='filling_level')
-
- # CO2 limit
- m.add_constraints(((y / eff_i) * co2_factor_i * dt).sum() <= l_co2 * 1_000_000, name='CO2_limit')
-
- # Solve the model
- info_yellow_build.empty()
- info_green_build = st.success(df.loc['label_build_model', st.session_state.lang])
- info_yellow_solve = st.info(df.loc['label_solve_model', st.session_state.lang])
-
-
- m.solve(solver_name='highs')
-
- info_yellow_solve.empty()
- info_green_solve = st.success(df.loc['label_solve_model', st.session_state.lang])
- info_yellow_plot = st.info(df.loc['label_generate_plots', st.session_state.lang])
-
-
-
- # Prepare columns for figures
- colb1, colb2 = st.columns(2)
-
- # Generate and display figures
- st.markdown("---")
-
- df_total_costs = plot_total_costs(m, colb1, df)
- df_CO2_price = plot_co2_price(m, colb2, df)
- df_new_capacities = plot_new_capacities(m, color_dict, colb1, df)
-
- # Only plot production for technologies with capacity
- i_with_capacity = m.solution['K'].where((m.solution['K'] > 0) & (m.solution['i'] != 'Electrolyzer')).dropna(dim='i').get_index('i')
- df_production = plot_production(m, i_with_capacity, dt, color_dict, colb2, df)
- # df_price = plot_electricity_prices(m, dt, colb2, df)
- df_curtailment = plot_curtailment(m, iRes, color_dict, colb1, df)
- df_residual_load_duration = plot_residual_load_duration(m, dt, colb1, df, D_t, i_with_capacity, iRes, color_dict, df_curtailment)
- df_price = plot_electricity_prices(m, dt, colb2, df, df_residual_load_duration)
-
- df_contr_marg = plot_contribution_margin(m, dt, color_dict, colb1, df)
- # df_curtailment = plot_curtailment(m, iRes, color_dict, colb1, df)
- df_charging = plot_storage_charging(m, iSto, color_dict, colb2, df)
- df_h2_prod = plot_hydrogen_production(m, iPtG, color_dict, colb1, df)
-
- # df_stackplot = plot_stackplot(m)
-
- # Export results
-
- st.session_state.output = BytesIO()
-
-
- with pd.ExcelWriter(st.session_state.output, engine='xlsxwriter') as writer:
- disaggregate_df(df_total_costs, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_total_costs', st.session_state.lang], index=False)
- disaggregate_df(df_CO2_price, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_co2_price', st.session_state.lang], index=False)
- disaggregate_df(df_price, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_prices', st.session_state.lang], index=False)
- disaggregate_df(df_contr_marg, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_contribution_margin', st.session_state.lang], index=False)
- disaggregate_df(df_new_capacities, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_capacities', st.session_state.lang], index=False)
- disaggregate_df(df_production, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_production', st.session_state.lang], index=False)
- disaggregate_df(df_charging, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_charging', st.session_state.lang], index=False)
- disaggregate_df(D_t.to_dataframe().reset_index(), t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_demand', st.session_state.lang], index=False)
- disaggregate_df(df_curtailment, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_curtailment', st.session_state.lang], index=False)
- disaggregate_df(df_h2_prod, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_h2_production', st.session_state.lang], index=False)
-
- with col1:
- st.title(df.loc['model_title2', st.session_state.lang])
-
- st.download_button(label=df.loc['model_title2.1',st.session_state.lang], disabled=(st.session_state.output.getbuffer().nbytes==0), data=st.session_state.output.getvalue(), file_name="workbook.xlsx", mime="application/vnd.ms-excel")
-
- info_yellow_plot.empty()
- info_green_plot = st.success(df.loc['label_generate_plots', st.session_state.lang])
-
- time.sleep(1)
-
- info_green_build.empty()
- info_green_solve.empty()
- info_green_plot.empty()
-
- st.stop()
-
-
-
- # st.rerun()
-
-
-def timstep_aggregate(time_steps_aggregate, xr_data, t):
- """
- Aggregates time steps in the data using rolling mean and selects based on step size.
- """
- return xr_data.rolling(t=time_steps_aggregate).mean().sel(t=t[0::time_steps_aggregate])
-
-# Visualization functions
-
-def plot_total_costs(m, col, df):
- """
- Displays the total costs.
- """
- total_costs = float(m.solution['C_inv'].values) + float(m.solution['C_op'].values)
- total_costs_rounded = round(total_costs / 1e9, 2)
- with col:
- st.markdown(
- f"
{df.loc['plot_label_total_costs', st.session_state.lang]} {total_costs_rounded}
",
- unsafe_allow_html=True
- )
-
- df_total_costs = pd.DataFrame({'Total costs':[total_costs]})
- return df_total_costs
-
-def plot_co2_price(m, col, df):
- """
- Displays the CO2 price based on the CO2 constraint dual values.
- """
- CO2_price = float(m.constraints['CO2_limit'].dual.values) * (-1)
- CO2_price_rounded = round(CO2_price, 2)
- df_CO2_price = pd.DataFrame({'CO2 price': [CO2_price]})
- with col:
- st.markdown(
- f"{df.loc['plot_label_co2_price', st.session_state.lang]} {CO2_price_rounded}
",
- unsafe_allow_html=True
- )
-
- return df_CO2_price
-
-
-def plot_new_capacities(m, color_dict, col, df):
- """
- Plots the new capacities installed in MW as a bar chart and pie chart.
- Includes technologies with 0 MW capacity in the bar chart.
- Supports both German and English labels for technologies while ensuring color consistency.
- """
- # Convert the solution for new capacities to a DataFrame
- df_new_capacities = m.solution['K'].round(0).to_dataframe().reset_index()
-
- # Store the English technology names in a separate column to maintain color consistency
- df_new_capacities['i_en'] = df_new_capacities['i']
-
- # Check if the language is German and map English names to German for display
- if st.session_state.lang == 'DE':
- tech_mapping_en_to_de = {
- df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
- for tech in df_new_capacities['i_en'] if f'tech_{tech.lower()}' in df.index
- }
- # Replace the English technology names with German ones for display
- df_new_capacities['i'] = df_new_capacities['i_en'].replace(tech_mapping_en_to_de)
-
- # Bar plot for new capacities (including technologies with 0 MW)
- fig_bar = px.bar(df_new_capacities, y='i', x='K', orientation='h',
- title=df.loc['plot_label_new_capacities', st.session_state.lang],
- color='i_en', # Use the English names for consistent coloring
- color_discrete_map=color_dict,
- labels={'K': '', 'i': ''} # Delete double labeling
- )
-
- # Hide the legend completely since the labels are already next to the bars
- fig_bar.update_layout(showlegend=False)
-
- with col:
- st.plotly_chart(fig_bar)
-
- # Pie chart for new capacities (only show technologies with K > 0 in pie chart)
- df_new_capacities_filtered = df_new_capacities[df_new_capacities["K"] > 0]
- fig_pie = px.pie(df_new_capacities_filtered, names='i', values='K',
- title=df.loc['plot_label_new_capacities_pie', st.session_state.lang],
- color='i_en', color_discrete_map=color_dict)
-
- # Remove English labels (i_en) from the pie chart legend
- fig_pie.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
- fig_pie.for_each_trace(lambda t: t.update(name=df_new_capacities_filtered['i'].iloc[0] if st.session_state.lang == 'DE' else t.name))
-
- with col:
- st.plotly_chart(fig_pie)
-
- return df_new_capacities
-
-
-def plot_production(m, i_with_capacity, dt, color_dict, col, df):
- """
- Plots the energy production for technologies with capacity as an area chart.
- Supports both German and English labels for technologies while ensuring color consistency.
- """
- # Convert the production data to a DataFrame
- df_production = m.solution['y'].sel(i=i_with_capacity).to_dataframe().reset_index()
-
- # Store the English technology names in a separate column to maintain color consistency
- df_production['i_en'] = df_production['i']
-
- # Convert 't'-column in a datetime format
- df_production['t'] = df_production['t'].str.strip("'")
- df_production['t'] = pd.to_datetime(df_production['t'], format='%Y-%m-%d %H:%M %z')
-
- # Check if the language is German and map English names to German for display
- if st.session_state.lang == 'DE':
- tech_mapping_en_to_de = {
- df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
- for tech in df_production['i_en'] if f'tech_{tech.lower()}' in df.index
- }
- # Replace the English technology names with German ones for display
- df_production['i'] = df_production['i_en'].replace(tech_mapping_en_to_de)
-
- # Area plot for energy production
- fig = px.area(df_production, y='y', x='t',
- title=df.loc['plot_label_production', st.session_state.lang],
- color='i_en', # Use the English names for consistent coloring
- color_discrete_map=color_dict,
- labels={'y': '', 't': '', 'i_en': df.loc['label_technology', st.session_state.lang]} # Delete double labeling
- )
-
- # Update legend labels to display German names instead of English
- if st.session_state.lang == 'DE':
- fig.for_each_trace(lambda trace: trace.update(name=tech_mapping_en_to_de[trace.name]))
-
- fig.update_traces(line=dict(width=0))
- fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))
-
- # # Customize x-axis for better date formatting
- # fig.update_layout(
- # xaxis=dict(
- # tickformat="%d/%m/%Y", # Display months and years in MM/YYYY format
- # title='', # No title for the x-axis
- # type="date" # Ensure x-axis is treated as a date axis
- # ),
- # xaxis_tickangle=-45 # Tilt the ticks for better readability
- # )
-
- with col:
- st.plotly_chart(fig)
-
- # Pie chart for total production
- df_production_sum = (df_production.groupby(['i', 'i_en'])['y'].sum() * dt / 1000).round(0).reset_index()
-
- # If the language is set to German, display German labels, otherwise use English
- pie_column = 'i' if st.session_state.lang == 'DE' else 'i_en'
-
- # Pie chart for total production
- fig_pie = px.pie(df_production_sum, names=pie_column, values='y',
- title=df.loc['plot_label_total_production_pie', st.session_state.lang],
- color='i_en', # Ensure the coloring stays consistent using the 'i_en' column
- color_discrete_map=color_dict)
-
- # Update legend title to reflect the correct language
- fig_pie.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
-
- with col:
- st.plotly_chart(fig_pie)
-
- return df_production
-
-
-def plot_electricity_prices(m, dt, col, df, df_residual_load_duration):
- """
- Plots the electricity price and the price duration curve.
- Supports both German and English labels for the plot titles and axis labels.
- """
- # Convert the dual constraints to a DataFrame
- df_price = m.constraints['load'].dual.to_dataframe().reset_index()
-
- # Convert 't'-column in a datetime format
- df_price['t'] = df_price['t'].str.strip("'")
- df_price['t'] = pd.to_datetime(df_price['t'], format='%Y-%m-%d %H:%M %z')
-
- # Line plot for electricity prices
- fig_price = px.line(df_price, y='dual', x='t',
- title=df.loc['plot_label_electricity_prices', st.session_state.lang],
- # range_y=[0, 250],
- labels={'dual': '', 't': ''}
- )
- with col:
- st.plotly_chart(fig_price)
-
- # Create the price duration curve
- df_sorted_price = df_price["dual"].repeat(dt).sort_values(ascending=False).reset_index(drop=True) / int(dt)
- df_residual_load_sorted = df_residual_load_duration.sort_values(by='Residual_Load', ascending=False).reset_index(drop=True)
- df_axis2 = df_residual_load_sorted['Residual_Load']
-
- ax2_max = np.max(df_axis2)
- ax2_min = np.min(df_axis2)
-
- fig_duration = go.Figure()
-
- # Add primary y-axis trace (Price duration curve)
- fig_duration.add_trace(go.Scatter(
- x=df_sorted_price.index,
- y=df_sorted_price,
- mode='lines',
- name=df.loc['plot_label_price_duration_curve', st.session_state.lang], # Price duration label
- line=dict(color='blue', width=2) # Blue line for primary y-axis
- ))
-
- # Add secondary y-axis trace (Residual load)
- fig_duration.add_trace(go.Scatter(
- x=df_axis2.index,
- y=df_axis2,
- mode='lines',
- name=df.loc['plot_label_residual_load', st.session_state.lang], # Residual load label
- line=dict(color='red', width=2), # Red line for secondary y-axis
- yaxis='y2' # Link this trace to the secondary y-axis
- ))
-
- # Layout mit separaten Achsen
- fig_duration.update_layout(
- title=df.loc['plot_label_price_duration_curve', st.session_state.lang],
- xaxis=dict(
- title=df.loc['label_hours', st.session_state.lang] # Common x-axis
- ),
- yaxis=dict(
- title=df.loc['plot_label_price_duration_curve', st.session_state.lang], # Title for primary y-axis
- range=[-(100/(ax2_max/(ax2_max-ax2_min))-100), 100], # Primary y-axis range
- titlefont=dict(color='blue'), # Blue color for primary axis title
- tickfont=dict(color='blue') # Blue ticks for primary axis
- ),
- yaxis2=dict(
- title=df.loc['plot_label_residual_load', st.session_state.lang], # Title for secondary y-axis
- range=[ax2_min, ax2_max], # Secondary y-axis range
- titlefont=dict(color='red'), # Red color for secondary axis title
- tickfont=dict(color='red'), # Red ticks for secondary axis
- overlaying='y', # Overlay secondary axis on primary
- side='right' # Place secondary y-axis on the right side
- ),
- legend=dict(
- x=1, # Positioniert die Legende am rechten Rand
- y=1, # Positioniert die Legende am oberen Rand
- xanchor='right', # Verankert die Legende am rechten Rand
- yanchor='top', # Verankert die Legende am oberen Rand
- bgcolor='rgba(255, 255, 255, 0.5)', # Weißer Hintergrund mit Transparenz
- bordercolor='black',
- borderwidth=1
- )
- )
-
-
- with col:
- st.plotly_chart(fig_duration)
-
- return df_price
-
-def plot_residual_load_duration(m, dt, col, df, D_t, i_with_capacity, iRes, color_dict, df_curtailment):
- """
- Plots the residual load and corresponding production as a stacked area chart.
- Supports both German and English labels for the plot titles and axis labels.
- Consistent color coding for technologies using a predefined color dictionary.
- """
-
- # Extract load data and repeat each value to match the total number of hours in the year
- df_load = D_t.values.flatten()
- total_hours = len(df_load) * dt # Calculate the total number of hours dynamically
- repeated_load = np.repeat(df_load, dt)[:total_hours] # Repeat values to represent each hour
-
- # Convert production data to DataFrame
- df_production = m.solution['y'].sel(i=i_with_capacity).to_dataframe().reset_index()
-
- # Pivot production data to get technologies as columns and time 't' as index
- df_production_pivot = df_production.pivot(index='t', columns='i', values='y')
-
- # Repeat the pivoted production data to match the number of hours
- repeated_index = np.repeat(df_production_pivot.index, dt)[:total_hours] # Create repeated index
- df_production_repeated = df_production_pivot.loc[repeated_index].reset_index(drop=True)
-
- # Create load series with the same index as the repeated production data
- df_load_series = pd.Series(repeated_load, index=df_production_repeated.index, name='Load')
-
- # Combine load with repeated production data
- df_combined = df_production_repeated.copy()
- df_combined['Load'] = df_load_series
-
- # Identify renewable technologies from iRes
- iRes_list = iRes.tolist() # Convert the Index to a list
-
- # Calculate renewable generation (only include available technologies in df_combined)
- renewable_columns = [col for col in iRes_list if col in df_combined.columns]
- df_combined['Renewable_Generation'] = df_combined[renewable_columns].sum(axis=1) if renewable_columns else 0
-
- # Create pivot table of curtailment
- df_curtailment_pivot = df_curtailment.pivot(index='t', columns='i', values='y_curt')
- repeated_index = np.repeat(df_curtailment_pivot.index, dt)[:total_hours] # Create repeated index
- df_curtailment_repeated = df_curtailment_pivot.loc[repeated_index].reset_index(drop=True)
- df_curtailment_repeated['Sum'] = df_curtailment_repeated.sum(axis=1)
- df_combined['Sum_curtailment'] = -df_curtailment_repeated['Sum']
-
- # Calculate residual load as the difference between total load and renewable generation
- df_combined['Residual_Load'] = df_combined['Load'] - df_combined['Renewable_Generation'] + df_combined['Sum_curtailment']
-
- # Sort DataFrame by residual load (descending order) to create the duration curve
- df_sorted = df_combined.sort_values(by='Residual_Load', ascending=False).reset_index(drop=True)
-
- # Identify all technology columns except 'Load', 'Residual_Load', 'Renewable_Generation'
- technology_columns = [col for col in df_combined.columns if col not in ['Load', 'Residual_Load', 'Renewable_Generation', 'Sum_curtailment']]
-
- # Mapping English technology names to German (if desired)
- if st.session_state.lang == 'DE':
- tech_mapping_en_to_de = {
- df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
- for tech in technology_columns if f'tech_{tech.lower()}' in df.index
- }
- else:
- tech_mapping_en_to_de = {tech: tech for tech in technology_columns} # Use the original names if not in German
-
-
- # Plotting with Plotly - Creating stacked area chart
- fig = go.Figure()
-
- # Add stacked area traces for each production technology with consistent colors and language-specific names
- for tech in technology_columns:
- tech_name = tech_mapping_en_to_de.get(tech, tech) # Get the translated name or fallback to the original
- fig.add_trace(go.Scatter(
- x=df_sorted.index,
- y=df_sorted[tech],
- mode='lines',
- stackgroup='one', # For stacking traces
- name=tech_name,
- line=dict(width=0.5, color=color_dict.get(tech))
- ))
-
- # Add residual load trace as a red line
- fig.add_trace(go.Scatter(
- x=df_sorted.index,
- y=df_sorted['Residual_Load'],
- mode='lines',
- name=df.loc['plot_label_residual_load', st.session_state.lang], # Residual load label in current language
- line=dict(color='red', width=2)
- ))
-
-
- # Add curtailment trace as a shaded area with a dark yellow tone
- fig.add_trace(go.Scatter(
- x=df_sorted.index,
- y=df_sorted['Sum_curtailment'],
- mode='lines', # Line mode for the boundary of the area
- name=df.loc['plot_label_sum_curtailment', st.session_state.lang], # Curtailment label in current language
- line=dict(color='rgba(204, 153, 0, 1)', width=1.5), # Dark yellow line
- fill='tozeroy', # Fill area down to the x-axis
- fillcolor='rgba(204, 153, 0, 0.3)' # Semi-transparent dark yellow for the fill
- ))
-
- # Layout settings for the plot
- fig.update_layout(
- title=df.loc['plot_label_residual_load_curve', st.session_state.lang],
- xaxis_title=df.loc['label_hours', st.session_state.lang],
- template="plotly_white",
- )
-
- # Display the plot in Streamlit
- with col:
- st.plotly_chart(fig)
-
- return df_combined
-
-
-
-def plot_contribution_margin(m, dt, color_dict, col, df):
- """
- Plots the contribution margin for each technology.
- Supports both German and English labels for titles and axes while ensuring color consistency.
- """
- # Convert the dual constraints to a DataFrame
- df_contr_marg = m.constraints['max_cap'].dual.to_dataframe().reset_index()
-
- # Adjust the 'dual' values for the contribution margin calculation
- df_contr_marg['dual'] = df_contr_marg['dual'] / dt * (-1)
-
- # Store the English technology names in a separate column to maintain color consistency
- df_contr_marg['i_en'] = df_contr_marg['i']
-
- # Convert 't'-column in a datetime format
- df_contr_marg['t'] = pd.to_datetime(df_contr_marg['t'].str.strip("'"), format='%Y-%m-%d %H:%M %z')
-
- # Check if the language is German and map English names to German for display
- if st.session_state.lang == 'DE':
- tech_mapping_en_to_de = {
- df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
- for tech in df_contr_marg['i_en'] if f'tech_{tech.lower()}' in df.index
- }
- # Replace the English technology names with German ones for display
- df_contr_marg['i'] = df_contr_marg['i_en'].replace(tech_mapping_en_to_de)
-
- # Plot contribution margin for each technology
- fig = px.line(df_contr_marg, y='dual', x='t',
- title=df.loc['plot_label_contribution_margin', st.session_state.lang],
- color='i_en', # Use the English names for consistent coloring
- range_y=[0, 250], color_discrete_map=color_dict,
- labels={'dual':'', 't':'', 'i_en':''}
- )
-
- # Update legend to display the correct language
- fig.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
-
- # For German language, update the legend to show German technology names
- if st.session_state.lang == 'DE':
- fig.for_each_trace(lambda t: t.update(name=df_contr_marg.loc[df_contr_marg['i_en'] == t.name, 'i'].values[0]))
-
- # Display the plot
- with col:
- st.plotly_chart(fig)
-
- return df_contr_marg
-
-
-
-
-def plot_curtailment(m, iRes, color_dict, col, df):
- """
- Plots the curtailment of renewable energy.
- Supports both German and English labels for titles and axes while ensuring color consistency.
- """
- # Convert the curtailment solution to a DataFrame
- df_curtailment = m.solution['y_curt'].sel(i=iRes).to_dataframe().reset_index()
-
- # Convert 't'-column in a datetime format
- df_curtailment['t'] = pd.to_datetime(df_curtailment['t'].str.strip("'"), format='%Y-%m-%d %H:%M %z')
-
- # Store the English technology names in a separate column to maintain color consistency
- df_curtailment['i_en'] = df_curtailment['i']
-
- # Check if the language is German and map English names to German for display
- if st.session_state.lang == 'DE':
- tech_mapping_en_to_de = {
- df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
- for tech in df_curtailment['i_en'] if f'tech_{tech.lower()}' in df.index
- }
- # Replace the English technology names with German ones for display
- df_curtailment['i'] = df_curtailment['i_en'].replace(tech_mapping_en_to_de)
- else:
- df_curtailment['i'] = df_curtailment['i_en'] # Use English names if not German
-
- # Area plot for curtailment of renewable energy
- fig = px.area(df_curtailment, y='y_curt', x='t',
- title=df.loc['plot_label_curtailment', st.session_state.lang],
- color='i_en', # Use the English names for consistent coloring
- color_discrete_map=color_dict,
- labels={'y_curt': '', 't': ''} # Delete double labeling
- )
-
- # Remove line traces and use fill colors for the area plot
- fig.update_traces(line=dict(width=0))
- fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))
-
- # Update the legend title to reflect the correct language (German or English)
- fig.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
-
- # For German language, update the legend to show German technology names
- if st.session_state.lang == 'DE':
- fig.for_each_trace(lambda t: t.update(name=df_curtailment.loc[df_curtailment['i_en'] == t.name, 'i'].values[0]))
-
- # Display the plot
- with col:
- st.plotly_chart(fig)
-
- return df_curtailment
-
-
-
-def plot_storage_charging(m, iSto, color_dict, col, df):
- """
- Plots the charging of storage technologies.
- Supports both German and English labels for titles and axes while ensuring color consistency.
- """
- # Convert the storage charging solution to a DataFrame
- df_charging = m.solution['y_ch'].sel(i=iSto).to_dataframe().reset_index()
-
- # Convert 't'-column in a datetime format
- df_charging['t'] = pd.to_datetime(df_charging['t'].str.strip("'"), format='%Y-%m-%d %H:%M %z')
-
- # Store the English technology names in a separate column to maintain color consistency
- df_charging['i_en'] = df_charging['i']
-
- # Check if the language is German and map English names to German for display
- if st.session_state.lang == 'DE':
- tech_mapping_en_to_de = {
- df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
- for tech in df_charging['i_en'] if f'tech_{tech.lower()}' in df.index
- }
- # Replace the English technology names with German ones for display
- df_charging['i'] = df_charging['i_en'].replace(tech_mapping_en_to_de)
- else:
- df_charging['i'] = df_charging['i_en'] # Use English names if not German
-
- # Area plot for storage charging
- fig = px.area(df_charging, y='y_ch', x='t',
- title=df.loc['plot_label_storage_charging', st.session_state.lang],
- color='i_en', # Use the English names for consistent coloring
- color_discrete_map=color_dict,
- labels={'y_ch': '', 't': ''} # Delete double labeling
- )
-
- # Remove line traces and use fill colors for the area plot
- fig.update_traces(line=dict(width=0))
- fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))
-
- # Update the legend title to reflect the correct language (German or English)
- fig.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
-
- # For German language, update the legend to show German technology names
- if st.session_state.lang == 'DE':
- fig.for_each_trace(lambda t: t.update(name=df_charging.loc[df_charging['i_en'] == t.name, 'i'].values[0]))
-
- # Display the plot
- with col:
- st.plotly_chart(fig)
-
- return df_charging
-
-
-
-def plot_hydrogen_production(m, iPtG, color_dict, col, df):
- """
- Plots the hydrogen production.
- Supports both German and English labels for titles and axes while ensuring color consistency.
- """
- # Convert the hydrogen production data to a DataFrame
- df_h2_prod = m.solution['y_h2'].sel(i=iPtG).to_dataframe().reset_index()
-
- # Convert 't'-column in a datetime format
- df_h2_prod['t'] = pd.to_datetime(df_h2_prod['t'].str.strip("'"), format='%Y-%m-%d %H:%M %z')
-
- # Store the English technology names in a separate column to maintain color consistency
- df_h2_prod['i_en'] = df_h2_prod['i']
-
- # Check if the language is German and map English names to German for display
- if st.session_state.lang == 'DE':
- tech_mapping_en_to_de = {
- df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
- for tech in df_h2_prod['i_en'] if f'tech_{tech.lower()}' in df.index
- }
- # Replace the English technology names with German ones for display
- df_h2_prod['i'] = df_h2_prod['i_en'].replace(tech_mapping_en_to_de)
- else:
- df_h2_prod['i'] = df_h2_prod['i_en'] # Keep English names if not German
-
- # Area plot for hydrogen production
- fig = px.area(df_h2_prod, y='y_h2', x='t',
- title=df.loc['plot_label_hydrogen_production', st.session_state.lang],
- color='i_en', # Use the English names for consistent coloring
- color_discrete_map=color_dict,
- labels={'y_h2': '', 't': ''} # Delete double labeling
- )
-
- # Remove line traces and use fill colors for the area plot
- fig.update_traces(line=dict(width=0))
- fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))
-
- # Update the legend title to reflect the correct language (German or English)
- fig.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
-
- # For German language, update the legend to show German technology names
- if st.session_state.lang == 'DE':
- fig.for_each_trace(lambda t: t.update(name=df_h2_prod.loc[df_h2_prod['i_en'] == t.name, 'i'].values[0]))
-
- # Display the plot
- with col:
- st.plotly_chart(fig)
-
- return df_h2_prod
-
-
-
-def disaggregate_df(df, t, t_original, dt):
- """
- Disaggregates the DataFrame based on the original time steps.
- """
- if "t" not in list(df.columns):
- return df
-
- # Change format of t back
- df['t'] = "'" + pd.to_datetime(df['t'], utc=True).dt.tz_convert('Europe/Berlin').dt.strftime('%Y-%m-%d %H:%M %z') + "'"
-
- df_t_all = pd.DataFrame({"t_all": t_original.to_series(), 't': t.repeat(dt)}).reset_index(drop=True)
- df_output = df.merge(df_t_all, on='t').drop('t', axis=1).rename({'t_all': 't'}, axis=1)
- df_output = df_output[[df_output.columns[-1]] + list(df_output.columns[:-1])]
- # Drop the helping column i_en
- df_output = df_output.drop(columns=['i_en'], errors='ignore')
- return df_output.sort_values('t')
-
-
-if __name__ == "__main__":
+# -*- coding: utf-8 -*-
+"""
+Energy system optimization model
+
+HEMF EWL: Christopher Jahns, Julian Radek, Hendrik Kramer, Cornelia Klüter, Yannik Pflugfelder
+"""
+
+import numpy as np
+import pandas as pd
+import xarray as xr
+import plotly.express as px
+import plotly.graph_objects as go
+import streamlit as st
+from io import BytesIO
+import xlsxwriter
+from linopy import Model
+import sourced as src
+import time
+
+
+# Main function to run the Streamlit app
+def main():
+ """
+ Main function to set up and solve the energy system optimization model, and handle user inputs and outputs.
+ """
+ setup_page()
+
+ settings = load_settings()
+
+ # fill session space with variables that are needed on all pages
+ if 'settings' not in st.session_state:
+ st.session_state.df = load_settings()
+ st.session_state.settings = settings
+
+ if 'url_excel' not in st.session_state:
+ st.session_state.url_excel = None
+
+ if 'ui_model' not in st.session_state:
+ st.session_state.url_excel = None
+
+ if 'output' not in st.session_state:
+ st.session_state.output = BytesIO()
+
+
+ setup_sidebar(st.session_state.settings["df"])
+
+
+
+ # # Navigation
+ # pg = st.navigation([st.Page(page_model, title=st.session_state.settings["df"].loc['menu_modell',st.session_state.lang], icon="📊"),
+ # st.Page(page_documentation, title=st.session_state.settings["df"].loc['menu_doku',st.session_state.lang], icon="📓"),
+ # st.Page(page_about_us, title=st.session_state.settings["df"].loc['menu_impressum',st.session_state.lang], icon="💬")],
+ # expanded=True)
+
+ # # # Run the app
+ # pg.run()
+
+ # Create tabs for navigation
+ tabs = st.tabs([
+ st.session_state.settings["df"].loc['menu_modell', st.session_state.lang],
+ st.session_state.settings["df"].loc['menu_doku', st.session_state.lang],
+ st.session_state.settings["df"].loc['menu_impressum', st.session_state.lang]
+ ])
+
+ # Load and display content based on the selected tab
+ with tabs[0]: # Model page
+ page_model()
+ with tabs[1]: # Documentation page
+ page_documentation()
+ with tabs[2]: # About Us page
+ page_about_us()
+
+
+
+
+# Load settings and initial configurations
+def load_settings():
+ """
+ Load settings for the app, including colors and language information.
+ """
+ settings = {
+ 'write_pickle_from_standard_excel': True,
+ 'df': pd.read_csv("language.csv", encoding="iso-8859-1", index_col="Label", sep=";"),
+ 'color_dict': {
+ 'Biomass': 'lightgreen',
+ 'Lignite': 'saddlebrown',
+ 'Fossil Hard coal': 'chocolate', # Ein Braunton ähnlich Lignite
+ 'Fossil Oil': 'black',
+ 'CCGT': 'lightgray', # Hellgrau
+ 'OCGT': 'darkgray', # Dunkelgrau
+ 'RoR': 'aquamarine',
+ 'Hydro Water Reservoir': 'lightsteelblue',
+ 'Nuclear': 'gold',
+ 'PV': 'yellow',
+ 'WindOff': 'darkblue',
+ 'WindOn': 'green',
+ 'H2': 'tomato',
+ 'Pumped Hydro Storage': 'skyblue',
+ 'Battery storages': 'firebrick',
+ 'Electrolyzer': 'yellowgreen'
+ },
+ 'colors': {
+ 'hemf_blau_dunkel': "#00386c",
+ 'hemf_blau_hell': "#00529f",
+ 'hemf_rot_dunkel': "#8b310d",
+ 'hemf_rot_hell': "#d04119",
+ 'hemf_grau': "#dadada"
+ }
+ }
+ return settings
+
+# Initialize Streamlit app
+def setup_page():
+ """
+ Set up the Streamlit page with a specific layout, title, and favicon.
+ """
+ st.set_page_config(layout="wide", page_title="Investment tool", page_icon="media/favicon.ico", initial_sidebar_state="expanded")
+
+
+# Sidebar for language and links
+def setup_sidebar(df):
+ """
+ Set up the sidebar with language options and external links.
+ """
+ st.session_state.lang = st.sidebar.selectbox("Language", ["🇬🇧 EN", "🇩🇪 DE"], key="foo", label_visibility="collapsed")[-2:]
+
+ st.sidebar.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ with st.sidebar:
+ left_co, cent_co, last_co = st.columns([0.1, 0.8, 0.1])
+ with cent_co:
+ st.text(" ") # add vertical empty space
+ ""+df.loc['menu_text', st.session_state.lang]
+ st.text(" ") # add vertical empty space
+
+ if st.session_state.lang == "DE":
+ st.write("Schaue vorbei beim")
+ st.markdown(r'[Lehrstuhl für Energiewirtschaft](https://www.ewl.wiwi.uni-due.de)', unsafe_allow_html=True)
+ elif st.session_state.lang == "EN":
+ st.write("Get in touch with the")
+ st.markdown(r'[Chair of Management Science and Energy Economics](https://www.ewl.wiwi.uni-due.de/en)', unsafe_allow_html=True)
+
+ st.text(" ") # add vertical empty space
+ st.image("media/Logo_HEMF.svg", width=200)
+ st.image("media/Logo_UDE.svg", width=200)
+
+
+# Load model input data
+def load_model_input(df, write_pickle_from_standard_excel):
+ """
+ Load model input data from Excel or Pickle based on user input.
+ """
+ if st.session_state.url_excel is None:
+ if write_pickle_from_standard_excel:
+ url_excel = r'Input_Jahr_2023.xlsx'
+ sets_dict, params_dict = src.load_data_from_excel(url_excel, write_to_pickle_flag=True)
+ sets_dict, params_dict = src.load_from_pickle()
+ #st.write(df.loc['model_title1.1', st.session_state.lang])
+ # st.write('Running with standard data')
+ else:
+ url_excel = st.session_state.url_excel
+ sets_dict, params_dict = src.load_data_from_excel(url_excel, load_from_pickle_flag=False)
+ st.write(df.loc['model_title1.2', st.session_state.lang])
+
+ return sets_dict, params_dict
+
+
+
+def page_documentation():
+ """
+ Display documentation and mathematical model details.
+ """
+
+ df = st.session_state.settings["df"]
+
+ st.header(df.loc['constr_header1', st.session_state.lang])
+ st.write(df.loc['constr_header2', st.session_state.lang])
+
+ col1, col2 = st.columns([6, 4])
+
+ with col1:
+ st.header(df.loc['constr_header3', st.session_state.lang])
+
+ with st.container():
+
+ # Objective function
+ st.subheader(df.loc['constr_subheader_obj_func', st.session_state.lang])
+ st.write(df.loc['constr_subheader_obj_func_descr', st.session_state.lang])
+ st.latex(r''' \text{min } C^{tot} = C^{op} + C^{inv}''')
+
+ # Operational costs minus revenue for produced hydrogen
+ st.write(df.loc['constr_c_op', st.session_state.lang])
+ st.latex(r''' C^{op} = \sum_{i} y_{t,i} \cdot \left( \frac{c^{fuel}_{i}}{\eta_i} + c_{i}^{other} \right) \cdot \Delta t - \sum_{i \in \mathcal{I}^{PtG}} y^{h2}_{t,i} \cdot p^{h2} \cdot \Delta t''')
+
+ # Investment costs
+ st.write(df.loc['constr_c_inv', st.session_state.lang])
+ st.latex(r''' C^{inv} = \sum_{i} a_{i} \cdot K_{i} \cdot c^{inv}_{i}''')
+
+ # Constraints
+ st.subheader(df.loc['subheader_constr', st.session_state.lang])
+
+ # Load-serving constraint
+ st.write(df.loc['constr_load_serve', st.session_state.lang])
+ st.latex(r''' \left( \sum_{i} y_{t,i} - \sum_{i} y_{t,i}^{ch} \right) \cdot \Delta t = D_t \cdot \Delta t, \quad \forall t \in \mathcal{T}''')
+
+ # Maximum capacity limit
+ st.write(df.loc['constr_max_cap', st.session_state.lang])
+ st.latex(r''' y_{t,i} - K_{i} \leq K_{0,i}, \quad \forall i \in \mathcal{I}''')
+
+ # Capacity limits for investment
+ st.write(df.loc['constr_inv_cap', st.session_state.lang])
+ st.latex(r''' K_{i} \leq 0, \quad \forall i \in \mathcal{I}^{no\_invest}''')
+
+ # Prevent power production by PtG
+ st.write(df.loc['constr_prevent_ptg', st.session_state.lang])
+ st.latex(r''' y_{t,i} = 0, \quad \forall i \in \mathcal{I}^{PtG}''')
+
+ # Prevent charging for non-storage technologies
+ st.write(df.loc['constr_prevent_chg', st.session_state.lang])
+ st.latex(r''' y_{t,i}^{ch} = 0, \quad \forall i \in \mathcal{I} \setminus \{ \mathcal{I}^{PtG} \cup \mathcal{I}^{Sto} \}''')
+
+ # Maximum storage charging and discharging
+ st.write(df.loc['constr_max_chg', st.session_state.lang])
+ st.latex(r''' y_{t,i} + y_{t,i}^{ch} - K_{i} \leq K_{0,i}, \quad \forall i \in \mathcal{I}^{Sto}''')
+
+ # Maximum electrolyzer capacity
+ st.write(df.loc['constr_max_cap_electrolyzer', st.session_state.lang])
+ st.latex(r''' y_{t,i}^{ch} - K_{i} \leq K_{0,i}, \quad \forall i \in \mathcal{I}^{PtG}''')
+
+ # PtG H2 production
+ st.write(df.loc['constr_prod_ptg', st.session_state.lang])
+ st.latex(r''' y_{t,i}^{ch} \cdot \eta_i = y_{t,i}^{h2}, \quad \forall i \in \mathcal{I}^{PtG}''')
+
+ # Infeed of renewables
+ st.write(df.loc['constr_inf_res', st.session_state.lang])
+ st.latex(r''' y_{t,i} + y_{t,i}^{curt} = s_{t,r,i} \cdot (K_{0,i} + K_i), \quad \forall i \in \mathcal{I}^{Res}''')
+
+ # Maximum filling level restriction for storage power plants
+ st.write(df.loc['constr_max_fil_sto', st.session_state.lang])
+ # st.latex(r''' l_{t,i} \leq K_{0,i} \cdot e2p_i, \quad \forall i \in \mathcal{I}^{Sto}''')
+ st.latex(r''' l_{t,i} \leq (K_{0,i} + K_{i}) \cdot \gamma_i^{Sto}, \quad \forall i \in \mathcal{I}^{Sto}''')
+
+ # Filling level restriction for hydro reservoir
+ st.write(df.loc['constr_fil_hyres', st.session_state.lang])
+ st.latex(r''' l_{t+1,i} = l_{t,i} + ( h_{t,i} - y_{t,i}) \cdot \Delta t, \quad \forall i \in \mathcal{I}^{HyRes}''')
+
+ # Filling level restriction for other storages
+ st.write(df.loc['constr_fil_sto', st.session_state.lang])
+ st.latex(r''' l_{t+1,i} = l_{t,i} - \left(\frac{y_{t,i}}{\eta_i} - y_{t,i}^{ch} \cdot \eta_i \right) \cdot \Delta t, \quad \forall i \in \mathcal{I}^{Sto}''')
+
+ # CO2 emission constraint
+ st.write(df.loc['constr_co2_lim', st.session_state.lang])
+ st.latex(r''' \sum_{t} \sum_{i} \frac{y_{t,i}}{\eta_i} \cdot \chi^{CO2}_i \cdot \Delta t \leq L^{CO2}''')
+
+
+ with col2:
+
+ symbols_container = st.container()
+ with symbols_container:
+ st.header(df.loc['symb_header1', st.session_state.lang])
+ st.write(df.loc['symb_header2', st.session_state.lang])
+
+ st.subheader(df.loc['symb_header_sets', st.session_state.lang])
+ st.write(f"$\mathcal{{T}}$: {df.loc['symb_time_steps', st.session_state.lang]}")
+ st.write(f"$\mathcal{{I}}$: {df.loc['symb_tech', st.session_state.lang]}")
+ st.write(f"$\mathcal{{I}}^{{\\text{{Sto}}}}$: {df.loc['symb_sto_tech', st.session_state.lang]}")
+ st.write(f"$\mathcal{{I}}^{{\\text{{Conv}}}}$: {df.loc['symb_conv_tech', st.session_state.lang]}")
+ st.write(f"$\mathcal{{I}}^{{\\text{{PtG}}}}$: {df.loc['symb_ptg', st.session_state.lang]}")
+ st.write(f"$\mathcal{{I}}^{{\\text{{Res}}}}$: {df.loc['symb_res', st.session_state.lang]}")
+ st.write(f"$\mathcal{{I}}^{{\\text{{HyRes}}}}$: {df.loc['symb_hyres', st.session_state.lang]}")
+ st.write(f"$\mathcal{{I}}^{{\\text{{no\_invest}}}}$: {df.loc['symb_no_inv', st.session_state.lang]}")
+
+
+
+ # Variables section
+ st.subheader(df.loc['symb_header_variables', st.session_state.lang])
+ st.write(f"$C^{{tot}}$: {df.loc['symb_tot_costs', st.session_state.lang]}")
+ st.write(f"$C^{{op}}$: {df.loc['symb_c_op', st.session_state.lang]}")
+ st.write(f"$C^{{inv}}$: {df.loc['symb_c_inv', st.session_state.lang]}")
+ st.write(f"$K_i$: {df.loc['symb_inst_cap', st.session_state.lang]}")
+ st.write(f"$y_{{t,i}}$: {df.loc['symb_el_prod', st.session_state.lang]}")
+ st.write(f"$y_{{t, i}}^{{ch}}$: {df.loc['symb_el_ch', st.session_state.lang]}")
+ st.write(f"$l_{{t,i}}$: {df.loc['symb_sto_fil', st.session_state.lang]}")
+ st.write(f"$y_{{t, i}}^{{curt}}$: {df.loc['symb_curt', st.session_state.lang]}")
+ st.write(f"$y_{{t, i}}^{{h2}}$: {df.loc['symb_h2_ptg', st.session_state.lang]}")
+
+
+ # Parameters section
+ st.subheader(df.loc['symb_header_parameters', st.session_state.lang])
+ st.write(f"$D_t$: {df.loc['symb_energy_demand', st.session_state.lang]}")
+ st.write(f"$p^{{h2}}$: {df.loc['symb_price_h2', st.session_state.lang]}")
+ st.write(f"$c^{{fuel}}_{{i}}$: {df.loc['symb_fuel_costs', st.session_state.lang]}")
+ st.write(f"$c_{{i}}^{{other}}$: {df.loc['symb_c_op_other', st.session_state.lang]}")
+ st.write(f"$c^{{inv}}_{{i}}$: {df.loc['symb_c_inv_tech', st.session_state.lang]}")
+ st.write(f"$a_{{i}}$: {df.loc['symb_annuity', st.session_state.lang]}")
+ st.write(f"$\eta_i$: {df.loc['symb_eff_fac', st.session_state.lang]}")
+ st.write(f"$K_{{0,i}}$: {df.loc['symb_max_cap_tech', st.session_state.lang]}")
+ st.write(f"$\chi^{{CO2}}_i$: {df.loc['symb_co2_fac', st.session_state.lang]}")
+ st.write(f"$L^{{CO2}}$: {df.loc['symb_co2_limit', st.session_state.lang]}")
+ # st.write(f"$e2p_{{\\text{{Sto}}, i}}$: {df.loc['symb_etp', st.session_state.lang]}")
+ st.write(f"$\gamma^{{\\text{{Sto}}}}_{{i}}$: {df.loc['symb_etp', st.session_state.lang]}")
+ st.write(f"$s_{{t, r, i}}$: {df.loc['symb_res_supply', st.session_state.lang]}")
+ st.write(f"$h_{{t, i}}$: {df.loc['symb_hyRes_inflow', st.session_state.lang]}")
+
+ # css = float_css_helper(top="50")
+ # symbols_container.float(css)
+
+
+def page_about_us():
+ """
+ Display information about the team and the project.
+ """
+ st.write("About Us/Impressum")
+
+
+def page_model(): #, write_pickle_from_standard_excel, color_dict):
+ """
+ Display the main model page for energy system optimization.
+
+ This function sets up the user interface for the model input parameters, loads data, and configures the
+ optimization model before solving it and presenting the results.
+ """
+
+ df = st.session_state.settings["df"]
+ color_dict = st.session_state.settings["color_dict"]
+ write_pickle_from_standard_excel = st.session_state.settings["write_pickle_from_standard_excel"]
+
+
+
+
+ # Load data from Excel or Pickle
+ sets_dict, params_dict = load_model_input(df, write_pickle_from_standard_excel)
+
+ # Unpack sets_dict into the workspace
+ t = sets_dict['t']
+ t_original = sets_dict['t']
+ i = sets_dict['i']
+ iSto = sets_dict['iSto']
+ iConv = sets_dict['iConv']
+ iPtG = sets_dict['iPtG']
+ iRes = sets_dict['iRes']
+ iHyRes = sets_dict['iHyRes']
+
+ # Unpack params_dict into the workspace
+ l_co2 = params_dict['l_co2']
+ p_co2 = params_dict['p_co2']
+ eff_i = params_dict['eff_i']
+ life_i = params_dict['life_i']
+ c_fuel_i = params_dict['c_fuel_i']
+ c_other_i = params_dict['c_other_i']
+ c_inv_i = params_dict['c_inv_i']
+ co2_factor_i = params_dict['co2_factor_i']
+ K_0_i = params_dict['K_0_i']
+ e2p_iSto = params_dict['e2p_iSto']
+
+ # Adjust efficiency for storage technologies
+ eff_i.loc[iSto] = np.sqrt(eff_i.loc[iSto]) # Apply square root to cycle efficiency for storage technologies
+
+ # Create columns for UI layout
+ col1, col2 = st.columns([0.30, 0.70], gap="large")
+
+ # Load input data
+ with col1:
+
+ st.title(df.loc['model_title1', st.session_state.lang])
+
+ with open('Input_Jahr_2023.xlsx', 'rb') as f:
+ st.download_button(df.loc['model_title1.3',st.session_state.lang], f, file_name='Input_Jahr_2023.xlsx') # Download button for Excel template
+
+ with st.form("input_file"):
+
+
+ st.session_state.url_excel = st.file_uploader(label=df.loc['model_title1.4',st.session_state.lang]) # File uploader for user Excel file
+
+ #st.title(df.loc['model_title4', st.session_state.lang])
+
+ run_model_excel = st.form_submit_button(df.loc['model_run_info_excel', st.session_state.lang]) #, key="run_model_button", help=df.loc['run_model_button_info',st.session_state.lang])
+ #else:
+ # run_model = st.button(df.loc['model_run_info_gui', st.session_state.lang], key="run_model_button", help=df.loc['run_model_button_info',st.session_state.lang])
+
+
+
+
+
+ # Set up user interface for parameters
+ with col2:
+
+ st.title(df.loc['model_title3', st.session_state.lang])
+
+
+
+ with st.form("input_custom"):
+
+ col1form, col2form, col3form = st.columns([0.25, 0.25, 0.50])
+
+ # colum 1 form
+ l_co2 = col1form.slider(value=int(params_dict['l_co2']), min_value=0, max_value=750, label=df.loc['model_label_co2',st.session_state.lang], step=50)
+ price_h2 = col1form.slider(value=100, min_value=0, max_value=300, label=df.loc['model_label_h2',st.session_state.lang], step=10)
+ for i_idx in params_dict['c_fuel_i'].get_index('i'):
+ if i_idx in ['Lignite']:
+ params_dict['c_fuel_i'].loc[i_idx] = col1form.slider(value=int(params_dict['c_fuel_i'].loc[i_idx]),
+ min_value=0, max_value=300, label=df.loc[f'model_label_{i_idx}',st.session_state.lang], step=10)
+
+ # colum 1 form
+ for i_idx in params_dict['c_fuel_i'].get_index('i'):
+ if i_idx in ['Fossil Hard coal', 'Fossil Oil', 'CCGT']:
+ params_dict['c_fuel_i'].loc[i_idx] = col2form.slider(value=int(params_dict['c_fuel_i'].loc[i_idx]),
+ min_value=0, max_value=300, label=df.loc[f'model_label_{i_idx}',st.session_state.lang], step=10)
+ params_dict['c_fuel_i'].loc['OCGT'] = params_dict['c_fuel_i'].loc['CCGT']
+ # Create a dictionary to map German names to English names
+ tech_mapping_de_to_en = {
+ df.loc[f'tech_{tech.lower()}', 'DE']: df.loc[f'tech_{tech.lower()}', 'EN']
+ for tech in sets_dict['i'] if f'tech_{tech.lower()}' in df.index
+ }
+
+ # Set options and default values based on the selected language
+ if st.session_state.lang == 'DE':
+ # German options for the user interface
+ options = [
+ df.loc[f'tech_{tech.lower()}', 'DE'] for tech in sets_dict['i'] if f'tech_{tech.lower()}' in df.index
+ ]
+ default = [
+ df.loc[f'tech_{tech.lower()}', 'DE'] for tech in ['Lignite', 'CCGT', 'OCGT', 'Fossil Hard coal', 'Fossil Oil', 'PV', 'WindOff', 'WindOn', 'H2', 'Pumped Hydro Storage', 'Battery storages', 'Electrolyzer']
+ if f'tech_{tech.lower()}' in df.index
+ ]
+ else:
+ # English options for the user interface
+ options = sets_dict['i']
+ default = ['Lignite', 'CCGT', 'OCGT', 'Fossil Hard coal', 'Fossil Oil', 'PV', 'WindOff', 'WindOn', 'H2', 'Pumped Hydro Storage', 'Battery storages', 'Electrolyzer']
+
+ # Multiselect for technology options in the user interface
+ selected_technologies = col3form.multiselect(
+ label=df.loc['model_label_tech', st.session_state.lang],
+ options=options,
+ default=[tech for tech in default if tech in options]
+ )
+
+ # If language is German, map selected German names back to their English equivalents
+ if st.session_state.lang == 'DE':
+ technologies_invest = [tech_mapping_de_to_en[tech] for tech in selected_technologies]
+ else:
+ technologies_invest = selected_technologies
+
+ # Technologies that will not be invested in (based on English names)
+ technologies_no_invest = [tech for tech in sets_dict['i'] if tech not in technologies_invest]
+
+ col4form, col5form = st.columns([0.25, 0.75])
+ dt = col4form.number_input(label=df.loc['model_label_t',st.session_state.lang], min_value=1, max_value=len(t), value=6,
+ help=df.loc['model_label_t_info',st.session_state.lang])
+
+ run_model_manual = col5form.form_submit_button(df.loc['model_run_info_gui', st.session_state.lang])
+
+ #run_model = st.button(df.loc['model_run_info_gui', st.session_state.lang], key="run_model_button", help=df.loc['run_model_button_info',st.session_state.lang])
+
+ st.markdown("-------")
+
+ # run_model_manual = True
+
+ if run_model_excel or run_model_manual:
+ # Model setup
+
+ info_yellow_build = st.info(df.loc['label_build_model', st.session_state.lang])
+
+
+ if run_model_excel: # overwrite with excel values
+ #sets_dict, params_dict = load_model_input(df, write_pickle_from_standard_excel)
+ sets_dict, params_dict = src.load_data_from_excel(st.session_state.url_excel, write_to_pickle_flag=True)
+
+ # Unpack sets_dict into the workspace
+ t = sets_dict['t']
+ t_original = sets_dict['t']
+ i = sets_dict['i']
+ iSto = sets_dict['iSto']
+ iConv = sets_dict['iConv']
+ iPtG = sets_dict['iPtG']
+ iRes = sets_dict['iRes']
+ iHyRes = sets_dict['iHyRes']
+
+ # Unpack params_dict into the workspace
+ l_co2 = params_dict['l_co2']
+ p_co2 = params_dict['p_co2']
+ eff_i = params_dict['eff_i']
+ # life_i = params_dict['life_i']
+ c_fuel_i = params_dict['c_fuel_i']
+ c_other_i = params_dict['c_other_i']
+ c_inv_i = params_dict['c_inv_i']
+ co2_factor_i = params_dict['co2_factor_i']
+ K_0_i = params_dict['K_0_i']
+ e2p_iSto = params_dict['e2p_iSto']
+
+ # Adjust efficiency for storage technologies
+ eff_i.loc[iSto] = np.sqrt(eff_i.loc[iSto]) # Apply square root to cycle efficiency for storage technologies
+
+
+ # Time series aggregation for various parameters
+ D_t = timstep_aggregate(dt, params_dict['D_t'], t)
+ s_t_r_iRes = timstep_aggregate(dt, params_dict['s_t_r_iRes'], t)
+ h_t = timstep_aggregate(dt, params_dict['h_t'], t)
+ t = D_t.get_index('t')
+ partial_year_factor = (8760 / len(t)) / dt
+
+ m = Model()
+
+ # Define Variables
+ C_tot = m.add_variables(name='C_tot') # Total costs
+ C_op = m.add_variables(name='C_op', lower=0) # Operational costs
+ C_inv = m.add_variables(name='C_inv', lower=0) # Investment costs
+ K = m.add_variables(coords=[i], name='K', lower=0) # Endogenous capacity
+ y = m.add_variables(coords=[t, i], name='y', lower=0) # Electricity production
+ y_ch = m.add_variables(coords=[t, i], name='y_ch', lower=0) # Electricity consumption
+ l = m.add_variables(coords=[t, i], name='l', lower=0) # Storage filling level
+ y_curt = m.add_variables(coords=[t, i], name='y_curt', lower=0) # RES curtailment
+ y_h2 = m.add_variables(coords=[t, i], name='y_h2', lower=0) # H2 production
+
+ # Define Objective function
+ C_tot = C_op + C_inv
+ m.add_objective(C_tot)
+
+ # Define Constraints
+ # Operational costs minus revenue for produced hydrogen
+ m.add_constraints((y * c_fuel_i / eff_i).sum() * dt - (y_h2.sel(i=iPtG) * price_h2).sum() * dt == C_op, name='C_op_sum')
+
+ # Investment costs
+ m.add_constraints((K * c_inv_i).sum() == C_inv, name='C_inv_sum')
+
+ # Load serving
+ m.add_constraints((((y).sum(dims='i') - y_ch.sum(dims='i')) * dt == D_t.sel(t=t) * dt), name='load')
+
+ # Maximum capacity limit
+ m.add_constraints((y - K <= K_0_i), name='max_cap')
+
+ # Capacity limits for investment
+ m.add_constraints((K.sel(i=technologies_no_invest) <= 0), name='max_cap_invest')
+
+ # Prevent power production by PtG
+ m.add_constraints((y.sel(i=iPtG) <= 0), name='prevent_ptg_prod')
+
+ # Prevent charging for non-storage technologies
+ m.add_constraints((y_ch.sel(i=[x for x in i if x not in iPtG and x not in iSto]) <= 0), name='no_charging')
+
+ # Maximum storage charging and discharging
+ m.add_constraints((y.sel(i=iSto) + y_ch.sel(i=iSto) - K.sel(i=iSto) <= K_0_i.sel(i=iSto)), name='max_cha')
+
+ # Maximum electrolyzer capacity
+ m.add_constraints((y_ch.sel(i=iPtG) - K.sel(i=iPtG) <= K_0_i.sel(i=iPtG)), name='max_cha_ptg')
+
+ # PtG H2 production
+ m.add_constraints(y_ch.sel(i=iPtG) * eff_i.sel(i=iPtG) == y_h2.sel(i=iPtG), name='ptg_h2_prod')
+
+ # Infeed of renewables
+ m.add_constraints((y.sel(i=iRes) - s_t_r_iRes.sel(i=iRes).sel(t=t) * K.sel(i=iRes) + y_curt.sel(i=iRes) == s_t_r_iRes.sel(i=iRes).sel(t=t) * K_0_i.sel(i=iRes)), name='infeed')
+
+ # Maximum filling level restriction for storage power plants
+ m.add_constraints((l.sel(i=iSto) - K.sel(i=iSto) * e2p_iSto.sel(i=iSto) <= K_0_i.sel(i=iSto) * e2p_iSto.sel(i=iSto)), name='max_sto_filling')
+
+ # Filling level restriction for hydro reservoir
+ m.add_constraints(l.sel(i=iHyRes) - l.sel(i=iHyRes).roll(t=-1) + y.sel(i=iHyRes) * dt == h_t.sel(t=t) * dt, name='filling_level_hydro')
+
+ # Filling level restriction for other storages
+ m.add_constraints(l.sel(i=iSto) - (l.sel(i=iSto).roll(t=-1) - (y.sel(i=iSto) / eff_i.sel(i=iSto)) * dt + y_ch.sel(i=iSto) * eff_i.sel(i=iSto) * dt) == 0, name='filling_level')
+
+ # CO2 limit
+ m.add_constraints(((y / eff_i) * co2_factor_i * dt).sum() <= l_co2 * 1_000_000, name='CO2_limit')
+
+ # Solve the model
+ info_yellow_build.empty()
+ info_green_build = st.success(df.loc['label_build_model', st.session_state.lang])
+ info_yellow_solve = st.info(df.loc['label_solve_model', st.session_state.lang])
+
+
+ m.solve(solver_name='highs')
+
+ info_yellow_solve.empty()
+ info_green_solve = st.success(df.loc['label_solve_model', st.session_state.lang])
+ info_yellow_plot = st.info(df.loc['label_generate_plots', st.session_state.lang])
+
+
+
+ # Prepare columns for figures
+ colb1, colb2 = st.columns(2)
+
+ # Generate and display figures
+ st.markdown("---")
+
+ df_total_costs = plot_total_costs(m, colb1, df)
+ df_CO2_price = plot_co2_price(m, colb2, df)
+ df_new_capacities = plot_new_capacities(m, color_dict, colb1, df)
+
+ # Only plot production for technologies with capacity
+ i_with_capacity = m.solution['K'].where((m.solution['K'] > 0) & (m.solution['i'] != 'Electrolyzer')).dropna(dim='i').get_index('i')
+ df_production = plot_production(m, i_with_capacity, dt, color_dict, colb2, df)
+ # df_price = plot_electricity_prices(m, dt, colb2, df)
+ df_curtailment = plot_curtailment(m, iRes, color_dict, colb1, df)
+ df_residual_load_duration = plot_residual_load_duration(m, dt, colb1, df, D_t, i_with_capacity, iRes, color_dict, df_curtailment)
+ df_price = plot_electricity_prices(m, dt, colb2, df, df_residual_load_duration)
+
+ df_contr_marg = plot_contribution_margin(m, dt, i_with_capacity, color_dict, colb1, df)
+ # df_curtailment = plot_curtailment(m, iRes, color_dict, colb1, df)
+ df_charging = plot_storage_charging(m, iSto, color_dict, colb2, df)
+ df_h2_prod = plot_hydrogen_production(m, iPtG, color_dict, colb1, df)
+
+ # df_stackplot = plot_stackplot(m)
+
+ # Export results
+
+ st.session_state.output = BytesIO()
+
+
+ with pd.ExcelWriter(st.session_state.output, engine='xlsxwriter') as writer:
+ disaggregate_df(df_total_costs, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_total_costs', st.session_state.lang], index=False)
+ disaggregate_df(df_CO2_price, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_co2_price', st.session_state.lang], index=False)
+ disaggregate_df(df_price, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_prices', st.session_state.lang], index=False)
+ disaggregate_df(df_contr_marg, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_contribution_margin', st.session_state.lang], index=False)
+ disaggregate_df(df_new_capacities, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_capacities', st.session_state.lang], index=False)
+ disaggregate_df(df_production, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_production', st.session_state.lang], index=False)
+ disaggregate_df(df_charging, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_charging', st.session_state.lang], index=False)
+ disaggregate_df(D_t.to_dataframe().reset_index(), t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_demand', st.session_state.lang], index=False)
+ disaggregate_df(df_curtailment, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_curtailment', st.session_state.lang], index=False)
+ disaggregate_df(df_h2_prod, t, t_original, dt).to_excel(writer, sheet_name=df.loc['sheet_name_h2_production', st.session_state.lang], index=False)
+
+ with col1:
+ st.title(df.loc['model_title2', st.session_state.lang])
+
+ st.download_button(label=df.loc['model_title2.1',st.session_state.lang], disabled=(st.session_state.output.getbuffer().nbytes==0), data=st.session_state.output.getvalue(), file_name="workbook.xlsx", mime="application/vnd.ms-excel")
+
+ info_yellow_plot.empty()
+ info_green_plot = st.success(df.loc['label_generate_plots', st.session_state.lang])
+
+ time.sleep(1)
+
+ info_green_build.empty()
+ info_green_solve.empty()
+ info_green_plot.empty()
+
+ st.stop()
+
+
+
+ # st.rerun()
+
+
+def timstep_aggregate(time_steps_aggregate, xr_data, t):
+ """
+ Aggregates time steps in the data using rolling mean and selects based on step size.
+ """
+ return xr_data.rolling(t=time_steps_aggregate).mean().sel(t=t[0::time_steps_aggregate])
+
+# Visualization functions
+
+def plot_total_costs(m, col, df):
+ """
+ Displays the total costs.
+ """
+ total_costs = float(m.solution['C_inv'].values) + float(m.solution['C_op'].values)
+ total_costs_rounded = round(total_costs / 1e9, 2)
+ with col:
+ st.markdown(
+ f"{df.loc['plot_label_total_costs', st.session_state.lang]} {total_costs_rounded}
",
+ unsafe_allow_html=True
+ )
+
+ df_total_costs = pd.DataFrame({'Total costs':[total_costs]})
+ return df_total_costs
+
+def plot_co2_price(m, col, df):
+ """
+ Displays the CO2 price based on the CO2 constraint dual values.
+ """
+ CO2_price = float(m.constraints['CO2_limit'].dual.values) * (-1)
+ CO2_price_rounded = round(CO2_price, 2)
+ df_CO2_price = pd.DataFrame({'CO2 price': [CO2_price]})
+ with col:
+ st.markdown(
+ f"{df.loc['plot_label_co2_price', st.session_state.lang]} {CO2_price_rounded}
",
+ unsafe_allow_html=True
+ )
+
+ return df_CO2_price
+
+
+def plot_new_capacities(m, color_dict, col, df):
+ """
+ Plots the new capacities installed in MW as a bar chart and pie chart.
+ Includes technologies with 0 MW capacity in the bar chart.
+ Supports both German and English labels for technologies while ensuring color consistency.
+ """
+ # Convert the solution for new capacities to a DataFrame
+ df_new_capacities = m.solution['K'].round(0).to_dataframe().reset_index()
+
+ # Store the English technology names in a separate column to maintain color consistency
+ df_new_capacities['i_en'] = df_new_capacities['i']
+
+ # Check if the language is German and map English names to German for display
+ if st.session_state.lang == 'DE':
+ tech_mapping_en_to_de = {
+ df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
+ for tech in df_new_capacities['i_en'] if f'tech_{tech.lower()}' in df.index
+ }
+ # Replace the English technology names with German ones for display
+ df_new_capacities['i'] = df_new_capacities['i_en'].replace(tech_mapping_en_to_de)
+
+ # Bar plot for new capacities (including technologies with 0 MW)
+ fig_bar = px.bar(df_new_capacities, y='i', x='K', orientation='h',
+ title=df.loc['plot_label_new_capacities', st.session_state.lang],
+ color='i_en', # Use the English names for consistent coloring
+ color_discrete_map=color_dict,
+ labels={'K': '', 'i': ''} # Delete double labeling
+ )
+
+ # Hide the legend completely since the labels are already next to the bars
+ fig_bar.update_layout(showlegend=False)
+
+ with col:
+ st.plotly_chart(fig_bar)
+
+ # Pie chart for new capacities (only show technologies with K > 0 in pie chart)
+ df_new_capacities_filtered = df_new_capacities[df_new_capacities["K"] > 0]
+ fig_pie = px.pie(df_new_capacities_filtered, names='i', values='K',
+ title=df.loc['plot_label_new_capacities_pie', st.session_state.lang],
+ color='i_en', color_discrete_map=color_dict)
+
+ # Remove English labels (i_en) from the pie chart legend
+ fig_pie.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
+ fig_pie.for_each_trace(lambda t: t.update(name=df_new_capacities_filtered['i'].iloc[0] if st.session_state.lang == 'DE' else t.name))
+
+ with col:
+ st.plotly_chart(fig_pie)
+
+ return df_new_capacities
+
+
+def plot_production(m, i_with_capacity, dt, color_dict, col, df):
+ """
+ Plots the energy production for technologies with capacity as an area chart.
+ Supports both German and English labels for technologies while ensuring color consistency.
+ """
+ # Convert the production data to a DataFrame
+ df_production = m.solution['y'].sel(i=i_with_capacity).to_dataframe().reset_index()
+
+ # Store the English technology names in a separate column to maintain color consistency
+ df_production['i_en'] = df_production['i']
+
+ # Convert 't'-column in a datetime format
+ df_production['t'] = df_production['t'].str.strip("'")
+ df_production['t'] = pd.to_datetime(df_production['t'], format='%Y-%m-%d %H:%M %z')
+
+ # Check if the language is German and map English names to German for display
+ if st.session_state.lang == 'DE':
+ tech_mapping_en_to_de = {
+ df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
+ for tech in df_production['i_en'] if f'tech_{tech.lower()}' in df.index
+ }
+ # Replace the English technology names with German ones for display
+ df_production['i'] = df_production['i_en'].replace(tech_mapping_en_to_de)
+
+ # Area plot for energy production
+ fig = px.area(df_production, y='y', x='t',
+ title=df.loc['plot_label_production', st.session_state.lang],
+ color='i_en', # Use the English names for consistent coloring
+ color_discrete_map=color_dict,
+ labels={'y': '', 't': '', 'i_en': df.loc['label_technology', st.session_state.lang]} # Delete double labeling
+ )
+
+ # Update legend labels to display German names instead of English
+ if st.session_state.lang == 'DE':
+ fig.for_each_trace(lambda trace: trace.update(name=tech_mapping_en_to_de[trace.name]))
+
+ fig.update_traces(line=dict(width=0))
+ fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))
+
+ # # Customize x-axis for better date formatting
+ # fig.update_layout(
+ # xaxis=dict(
+ # tickformat="%d/%m/%Y", # Display months and years in MM/YYYY format
+ # title='', # No title for the x-axis
+ # type="date" # Ensure x-axis is treated as a date axis
+ # ),
+ # xaxis_tickangle=-45 # Tilt the ticks for better readability
+ # )
+
+ with col:
+ st.plotly_chart(fig)
+
+ # Pie chart for total production
+ df_production_sum = (df_production.groupby(['i', 'i_en'])['y'].sum() * dt / 1000).round(0).reset_index()
+
+ # If the language is set to German, display German labels, otherwise use English
+ pie_column = 'i' if st.session_state.lang == 'DE' else 'i_en'
+
+ # Pie chart for total production
+ fig_pie = px.pie(df_production_sum, names=pie_column, values='y',
+ title=df.loc['plot_label_total_production_pie', st.session_state.lang],
+ color='i_en', # Ensure the coloring stays consistent using the 'i_en' column
+ color_discrete_map=color_dict)
+
+ # Update legend title to reflect the correct language
+ fig_pie.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
+
+ with col:
+ st.plotly_chart(fig_pie)
+
+ return df_production
+
+
+def plot_electricity_prices(m, dt, col, df, df_residual_load_duration):
+ """
+ Plots the electricity price and the price duration curve.
+ Supports both German and English labels for the plot titles and axis labels.
+ """
+ # Convert the dual constraints to a DataFrame
+ df_price = m.constraints['load'].dual.to_dataframe().reset_index()
+
+ # Convert 't'-column in a datetime format
+ df_price['t'] = df_price['t'].str.strip("'")
+ df_price['t'] = pd.to_datetime(df_price['t'], format='%Y-%m-%d %H:%M %z')
+
+ # Line plot for electricity prices
+ fig_price = px.line(df_price, y='dual', x='t',
+ title=df.loc['plot_label_electricity_prices', st.session_state.lang],
+ # range_y=[0, 250],
+ labels={'dual': '', 't': ''}
+ )
+ with col:
+ st.plotly_chart(fig_price)
+
+ # Create the price duration curve
+ df_sorted_price = df_price["dual"].repeat(dt).sort_values(ascending=False).reset_index(drop=True) / int(dt)
+ df_residual_load_sorted = df_residual_load_duration.sort_values(by='Residual_Load', ascending=False).reset_index(drop=True)
+ df_axis2 = df_residual_load_sorted['Residual_Load']
+
+ ax2_max = np.max(df_axis2)
+ ax2_min = np.min(df_axis2)
+
+ fig_duration = go.Figure()
+
+ # Add primary y-axis trace (Price duration curve)
+ fig_duration.add_trace(go.Scatter(
+ x=df_sorted_price.index,
+ y=df_sorted_price,
+ mode='lines',
+ name=df.loc['plot_label_price_duration_curve', st.session_state.lang], # Price duration label
+ line=dict(color='blue', width=2) # Blue line for primary y-axis
+ ))
+
+ # Add secondary y-axis trace (Residual load)
+ fig_duration.add_trace(go.Scatter(
+ x=df_axis2.index,
+ y=df_axis2,
+ mode='lines',
+ name=df.loc['plot_label_residual_load', st.session_state.lang], # Residual load label
+ line=dict(color='red', width=2), # Red line for secondary y-axis
+ yaxis='y2' # Link this trace to the secondary y-axis
+ ))
+
+ # Layout mit separaten Achsen
+ fig_duration.update_layout(
+ title=df.loc['plot_label_price_duration_curve', st.session_state.lang],
+ xaxis=dict(
+ title=df.loc['label_hours', st.session_state.lang] # Common x-axis
+ ),
+ yaxis=dict(
+ title=df.loc['plot_label_price_duration_curve', st.session_state.lang], # Title for primary y-axis
+ range=[-(100/(ax2_max/(ax2_max-ax2_min))-100), 100], # Primary y-axis range
+ titlefont=dict(color='blue'), # Blue color for primary axis title
+ tickfont=dict(color='blue') # Blue ticks for primary axis
+ ),
+ yaxis2=dict(
+ title=df.loc['plot_label_residual_load', st.session_state.lang], # Title for secondary y-axis
+ range=[ax2_min, ax2_max], # Secondary y-axis range
+ titlefont=dict(color='red'), # Red color for secondary axis title
+ tickfont=dict(color='red'), # Red ticks for secondary axis
+ overlaying='y', # Overlay secondary axis on primary
+ side='right' # Place secondary y-axis on the right side
+ ),
+ legend=dict(
+ x=1, # Positioniert die Legende am rechten Rand
+ y=1, # Positioniert die Legende am oberen Rand
+ xanchor='right', # Verankert die Legende am rechten Rand
+ yanchor='top', # Verankert die Legende am oberen Rand
+ bgcolor='rgba(255, 255, 255, 0.5)', # Weißer Hintergrund mit Transparenz
+ bordercolor='black',
+ borderwidth=1
+ )
+ )
+
+
+ with col:
+ st.plotly_chart(fig_duration)
+
+ return df_price
+
+def plot_residual_load_duration(m, dt, col, df, D_t, i_with_capacity, iRes, color_dict, df_curtailment):
+ """
+ Plots the residual load and corresponding production as a stacked area chart.
+ Supports both German and English labels for the plot titles and axis labels.
+ Consistent color coding for technologies using a predefined color dictionary.
+ """
+
+ # Extract load data and repeat each value to match the total number of hours in the year
+ df_load = D_t.values.flatten()
+ total_hours = len(df_load) * dt # Calculate the total number of hours dynamically
+ repeated_load = np.repeat(df_load, dt)[:total_hours] # Repeat values to represent each hour
+
+ # Convert production data to DataFrame
+ df_production = m.solution['y'].sel(i=i_with_capacity).to_dataframe().reset_index()
+
+ # Pivot production data to get technologies as columns and time 't' as index
+ df_production_pivot = df_production.pivot(index='t', columns='i', values='y')
+
+ # Repeat the pivoted production data to match the number of hours
+ repeated_index = np.repeat(df_production_pivot.index, dt)[:total_hours] # Create repeated index
+ df_production_repeated = df_production_pivot.loc[repeated_index].reset_index(drop=True)
+
+ # Create load series with the same index as the repeated production data
+ df_load_series = pd.Series(repeated_load, index=df_production_repeated.index, name='Load')
+
+ # Combine load with repeated production data
+ df_combined = df_production_repeated.copy()
+ df_combined['Load'] = df_load_series
+
+ # Identify renewable technologies from iRes
+ iRes_list = iRes.tolist() # Convert the Index to a list
+
+ # Calculate renewable generation (only include available technologies in df_combined)
+ renewable_columns = [col for col in iRes_list if col in df_combined.columns]
+ df_combined['Renewable_Generation'] = df_combined[renewable_columns].sum(axis=1) if renewable_columns else 0
+
+ # Create pivot table of curtailment
+ df_curtailment_pivot = df_curtailment.pivot(index='t', columns='i', values='y_curt')
+ repeated_index = np.repeat(df_curtailment_pivot.index, dt)[:total_hours] # Create repeated index
+ df_curtailment_repeated = df_curtailment_pivot.loc[repeated_index].reset_index(drop=True)
+ df_curtailment_repeated['Sum'] = df_curtailment_repeated.sum(axis=1)
+ df_combined['Sum_curtailment'] = -df_curtailment_repeated['Sum']
+
+ # Calculate residual load as the difference between total load and renewable generation
+ df_combined['Residual_Load'] = df_combined['Load'] - df_combined['Renewable_Generation'] + df_combined['Sum_curtailment']
+
+ # Sort DataFrame by residual load (descending order) to create the duration curve
+ df_sorted = df_combined.sort_values(by='Residual_Load', ascending=False).reset_index(drop=True)
+
+ # Identify all technology columns except 'Load', 'Residual_Load', 'Renewable_Generation'
+ technology_columns = [col for col in df_combined.columns if col not in ['Load', 'Residual_Load', 'Renewable_Generation', 'Sum_curtailment']]
+
+ # Mapping English technology names to German (if desired)
+ if st.session_state.lang == 'DE':
+ tech_mapping_en_to_de = {
+ df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
+ for tech in technology_columns if f'tech_{tech.lower()}' in df.index
+ }
+ else:
+ tech_mapping_en_to_de = {tech: tech for tech in technology_columns} # Use the original names if not in German
+
+
+ # Plotting with Plotly - Creating stacked area chart
+ fig = go.Figure()
+
+ # Add stacked area traces for each production technology with consistent colors and language-specific names
+ for tech in technology_columns:
+ tech_name = tech_mapping_en_to_de.get(tech, tech) # Get the translated name or fallback to the original
+ fig.add_trace(go.Scatter(
+ x=df_sorted.index,
+ y=df_sorted[tech],
+ mode='lines',
+ stackgroup='one', # For stacking traces
+ name=tech_name,
+ line=dict(width=0.5, color=color_dict.get(tech))
+ ))
+
+ # Add residual load trace as a red line
+ fig.add_trace(go.Scatter(
+ x=df_sorted.index,
+ y=df_sorted['Residual_Load'],
+ mode='lines',
+ name=df.loc['plot_label_residual_load', st.session_state.lang], # Residual load label in current language
+ line=dict(color='red', width=2)
+ ))
+
+
+ # Add curtailment trace as a shaded area with a dark yellow tone
+ fig.add_trace(go.Scatter(
+ x=df_sorted.index,
+ y=df_sorted['Sum_curtailment'],
+ mode='lines', # Line mode for the boundary of the area
+ name=df.loc['plot_label_sum_curtailment', st.session_state.lang], # Curtailment label in current language
+ line=dict(color='rgba(204, 153, 0, 1)', width=1.5), # Dark yellow line
+ fill='tozeroy', # Fill area down to the x-axis
+ fillcolor='rgba(204, 153, 0, 0.3)' # Semi-transparent dark yellow for the fill
+ ))
+
+ # Layout settings for the plot
+ fig.update_layout(
+ title=df.loc['plot_label_residual_load_curve', st.session_state.lang],
+ xaxis_title=df.loc['label_hours', st.session_state.lang],
+ template="plotly_white",
+ )
+
+ # Display the plot in Streamlit
+ with col:
+ st.plotly_chart(fig)
+
+ return df_combined
+
+
+
+def plot_contribution_margin(m, dt, i_with_capacity, color_dict, col, df):
+ """
+ Plots the contribution margin for each technology.
+ Supports both German and English labels for titles and axes while ensuring color consistency.
+ """
+ # Convert the dual constraints to a DataFrame
+ df_contr_marg = m.constraints['max_cap'].dual.sel(i=i_with_capacity).to_dataframe().reset_index()
+
+ # Adjust the 'dual' values for the contribution margin calculation
+ df_contr_marg['dual'] = df_contr_marg['dual'] / dt * (-1)
+
+ # Store the English technology names in a separate column to maintain color consistency
+ df_contr_marg['i_en'] = df_contr_marg['i']
+
+ # Convert 't'-column in a datetime format
+ df_contr_marg['t'] = pd.to_datetime(df_contr_marg['t'].str.strip("'"), format='%Y-%m-%d %H:%M %z')
+
+ # Check if the language is German and map English names to German for display
+ if st.session_state.lang == 'DE':
+ tech_mapping_en_to_de = {
+ df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
+ for tech in df_contr_marg['i_en'] if f'tech_{tech.lower()}' in df.index
+ }
+ # Replace the English technology names with German ones for display
+ df_contr_marg['i'] = df_contr_marg['i_en'].replace(tech_mapping_en_to_de)
+
+ # Plot contribution margin for each technology
+ fig = px.line(df_contr_marg, y='dual', x='t',
+ title=df.loc['plot_label_contribution_margin', st.session_state.lang],
+ color='i_en', # Use the English names for consistent coloring
+ range_y=[0, 250], color_discrete_map=color_dict,
+ labels={'dual':'', 't':'', 'i_en':''}
+ )
+
+ # Update legend to display the correct language
+ fig.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
+
+ # For German language, update the legend to show German technology names
+ if st.session_state.lang == 'DE':
+ fig.for_each_trace(lambda t: t.update(name=df_contr_marg.loc[df_contr_marg['i_en'] == t.name, 'i'].values[0]))
+
+ # Display the plot
+ with col:
+ st.plotly_chart(fig)
+
+ return df_contr_marg
+
+
+
+
+def plot_curtailment(m, iRes, color_dict, col, df):
+ """
+ Plots the curtailment of renewable energy.
+ Supports both German and English labels for titles and axes while ensuring color consistency.
+ """
+ # Convert the curtailment solution to a DataFrame
+ df_curtailment = m.solution['y_curt'].sel(i=iRes).to_dataframe().reset_index()
+
+ # Convert 't'-column in a datetime format
+ df_curtailment['t'] = pd.to_datetime(df_curtailment['t'].str.strip("'"), format='%Y-%m-%d %H:%M %z')
+
+ # Store the English technology names in a separate column to maintain color consistency
+ df_curtailment['i_en'] = df_curtailment['i']
+
+ # Check if the language is German and map English names to German for display
+ if st.session_state.lang == 'DE':
+ tech_mapping_en_to_de = {
+ df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
+ for tech in df_curtailment['i_en'] if f'tech_{tech.lower()}' in df.index
+ }
+ # Replace the English technology names with German ones for display
+ df_curtailment['i'] = df_curtailment['i_en'].replace(tech_mapping_en_to_de)
+ else:
+ df_curtailment['i'] = df_curtailment['i_en'] # Use English names if not German
+
+ # Area plot for curtailment of renewable energy
+ fig = px.area(df_curtailment, y='y_curt', x='t',
+ title=df.loc['plot_label_curtailment', st.session_state.lang],
+ color='i_en', # Use the English names for consistent coloring
+ color_discrete_map=color_dict,
+ labels={'y_curt': '', 't': ''} # Delete double labeling
+ )
+
+ # Remove line traces and use fill colors for the area plot
+ fig.update_traces(line=dict(width=0))
+ fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))
+
+ # Update the legend title to reflect the correct language (German or English)
+ fig.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
+
+ # For German language, update the legend to show German technology names
+ if st.session_state.lang == 'DE':
+ fig.for_each_trace(lambda t: t.update(name=df_curtailment.loc[df_curtailment['i_en'] == t.name, 'i'].values[0]))
+
+ # Display the plot
+ with col:
+ st.plotly_chart(fig)
+
+ return df_curtailment
+
+
+
+def plot_storage_charging(m, iSto, color_dict, col, df):
+ """
+ Plots the charging of storage technologies.
+ Supports both German and English labels for titles and axes while ensuring color consistency.
+ """
+ # Convert the storage charging solution to a DataFrame
+ df_charging = m.solution['y_ch'].sel(i=iSto).to_dataframe().reset_index()
+
+ # Drop out infinitesimal numbers
+ df_charging['y_ch'] = df_charging['y_ch'].apply(lambda x: 0 if x < 0.01 else x)
+
+ # Convert 't'-column in a datetime format
+ df_charging['t'] = pd.to_datetime(df_charging['t'].str.strip("'"), format='%Y-%m-%d %H:%M %z')
+
+ # Store the English technology names in a separate column to maintain color consistency
+ df_charging['i_en'] = df_charging['i']
+
+ # Check if the language is German and map English names to German for display
+ if st.session_state.lang == 'DE':
+ tech_mapping_en_to_de = {
+ df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
+ for tech in df_charging['i_en'] if f'tech_{tech.lower()}' in df.index
+ }
+ # Replace the English technology names with German ones for display
+ df_charging['i'] = df_charging['i_en'].replace(tech_mapping_en_to_de)
+ else:
+ df_charging['i'] = df_charging['i_en'] # Use English names if not German
+
+ # Area plot for storage charging
+ fig = px.area(df_charging, y='y_ch', x='t',
+ title=df.loc['plot_label_storage_charging', st.session_state.lang],
+ color='i_en', # Use the English names for consistent coloring
+ color_discrete_map=color_dict,
+ labels={'y_ch': '', 't': ''} # Delete double labeling
+ )
+
+ # Remove line traces and use fill colors for the area plot
+ fig.update_traces(line=dict(width=0))
+ fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))
+
+ # Update the legend title to reflect the correct language (German or English)
+ fig.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
+
+ # For German language, update the legend to show German technology names
+ if st.session_state.lang == 'DE':
+ fig.for_each_trace(lambda t: t.update(name=df_charging.loc[df_charging['i_en'] == t.name, 'i'].values[0]))
+
+ # Display the plot
+ with col:
+ st.plotly_chart(fig)
+
+ return df_charging
+
+
+
+def plot_hydrogen_production(m, iPtG, color_dict, col, df):
+ """
+ Plots the hydrogen production.
+ Supports both German and English labels for titles and axes while ensuring color consistency.
+ """
+ # Convert the hydrogen production data to a DataFrame
+ df_h2_prod = m.solution['y_h2'].sel(i=iPtG).to_dataframe().reset_index()
+
+ # Convert 't'-column in a datetime format
+ df_h2_prod['t'] = pd.to_datetime(df_h2_prod['t'].str.strip("'"), format='%Y-%m-%d %H:%M %z')
+
+ # Store the English technology names in a separate column to maintain color consistency
+ df_h2_prod['i_en'] = df_h2_prod['i']
+
+ # Check if the language is German and map English names to German for display
+ if st.session_state.lang == 'DE':
+ tech_mapping_en_to_de = {
+ df.loc[f'tech_{tech.lower()}', 'EN']: df.loc[f'tech_{tech.lower()}', 'DE']
+ for tech in df_h2_prod['i_en'] if f'tech_{tech.lower()}' in df.index
+ }
+ # Replace the English technology names with German ones for display
+ df_h2_prod['i'] = df_h2_prod['i_en'].replace(tech_mapping_en_to_de)
+ else:
+ df_h2_prod['i'] = df_h2_prod['i_en'] # Keep English names if not German
+
+ # Area plot for hydrogen production
+ fig = px.area(df_h2_prod, y='y_h2', x='t',
+ title=df.loc['plot_label_hydrogen_production', st.session_state.lang],
+ color='i_en', # Use the English names for consistent coloring
+ color_discrete_map=color_dict,
+ labels={'y_h2': '', 't': ''} # Delete double labeling
+ )
+
+ # Remove line traces and use fill colors for the area plot
+ fig.update_traces(line=dict(width=0))
+ fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color))
+
+ # Update the legend title to reflect the correct language (German or English)
+ fig.update_layout(legend_title_text=df.loc['label_technology', st.session_state.lang])
+
+ # For German language, update the legend to show German technology names
+ if st.session_state.lang == 'DE':
+ fig.for_each_trace(lambda t: t.update(name=df_h2_prod.loc[df_h2_prod['i_en'] == t.name, 'i'].values[0]))
+
+ # Display the plot
+ with col:
+ st.plotly_chart(fig)
+
+ return df_h2_prod
+
+
+
+def disaggregate_df(df, t, t_original, dt):
+ """
+ Disaggregates the DataFrame based on the original time steps.
+ """
+ if "t" not in list(df.columns):
+ return df
+
+ # Change format of t back
+ df['t'] = "'" + pd.to_datetime(df['t'], utc=True).dt.tz_convert('Europe/Berlin').dt.strftime('%Y-%m-%d %H:%M %z') + "'"
+
+ df_t_all = pd.DataFrame({"t_all": t_original.to_series(), 't': t.repeat(dt)}).reset_index(drop=True)
+ df_output = df.merge(df_t_all, on='t').drop('t', axis=1).rename({'t_all': 't'}, axis=1)
+ df_output = df_output[[df_output.columns[-1]] + list(df_output.columns[:-1])]
+ # Drop the helping column i_en
+ df_output = df_output.drop(columns=['i_en'], errors='ignore')
+ return df_output.sort_values('t')
+
+
+if __name__ == "__main__":
main()
\ No newline at end of file