Spaces:
Running
on
Zero
Running
on
Zero
File size: 51,726 Bytes
3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 182f943 5b2a969 3aba902 6b2ad92 3aba902 6b2ad92 3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 3aba902 5b2a969 3aba902 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 |
import os
import sys
import math
from tqdm import tqdm
from PIL import Image, ImageDraw
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
try:
sys.path.append(os.path.join(project_root, "submodules/MoGe"))
os.environ["TOKENIZERS_PARALLELISM"] = "false"
except:
print("Warning: MoGe not found, motion transfer will not be applied")
import torch
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from diffusers import FluxControlPipeline, CogVideoXDPMScheduler
from diffusers.utils import export_to_video, load_image, load_video
from models.spatracker.predictor import SpaTrackerPredictor
from models.spatracker.utils.visualizer import Visualizer
from models.cogvideox_tracking import CogVideoXImageToVideoPipelineTracking
from submodules.MoGe.moge.model import MoGeModel
from image_gen_aux import DepthPreprocessor
from moviepy.editor import ImageSequenceClip
class DiffusionAsShaderPipeline:
def __init__(self, gpu_id=0, output_dir='outputs'):
"""Initialize MotionTransfer class
Args:
gpu_id (int): GPU device ID
output_dir (str): Output directory path
"""
# video parameters
self.max_depth = 65.0
self.fps = 8
# camera parameters
self.camera_motion=None
self.fov=55
# device
self.device = f"cuda:{gpu_id}"
torch.cuda.set_device(gpu_id)
self.dtype = torch.bfloat16
# files
self.output_dir = output_dir
os.makedirs(output_dir, exist_ok=True)
# Initialize transform
self.transform = transforms.Compose([
transforms.Resize((480, 720)),
transforms.ToTensor()
])
@torch.no_grad()
def _infer(
self,
prompt: str,
model_path: str,
tracking_tensor: torch.Tensor = None,
image_tensor: torch.Tensor = None, # [C,H,W] in range [0,1]
output_path: str = "./output.mp4",
num_inference_steps: int = 25,
guidance_scale: float = 6.0,
num_videos_per_prompt: int = 1,
dtype: torch.dtype = torch.bfloat16,
fps: int = 24,
seed: int = 42,
):
"""
Generates a video based on the given prompt and saves it to the specified path.
Parameters:
- prompt (str): The description of the video to be generated.
- model_path (str): The path of the pre-trained model to be used.
- tracking_tensor (torch.Tensor): Tracking video tensor [T, C, H, W] in range [0,1]
- image_tensor (torch.Tensor): Input image tensor [C, H, W] in range [0,1]
- output_path (str): The path where the generated video will be saved.
- num_inference_steps (int): Number of steps for the inference process.
- guidance_scale (float): The scale for classifier-free guidance.
- num_videos_per_prompt (int): Number of videos to generate per prompt.
- dtype (torch.dtype): The data type for computation.
- seed (int): The seed for reproducibility.
"""
from transformers import T5EncoderModel, T5Tokenizer
from diffusers import AutoencoderKLCogVideoX, CogVideoXDDIMScheduler
from models.cogvideox_tracking import CogVideoXTransformer3DModelTracking
vae = AutoencoderKLCogVideoX.from_pretrained(model_path, subfolder="vae")
text_encoder = T5EncoderModel.from_pretrained(model_path, subfolder="text_encoder")
tokenizer = T5Tokenizer.from_pretrained(model_path, subfolder="tokenizer")
transformer = CogVideoXTransformer3DModelTracking.from_pretrained(model_path, subfolder="transformer")
scheduler = CogVideoXDDIMScheduler.from_pretrained(model_path, subfolder="scheduler")
pipe = CogVideoXImageToVideoPipelineTracking(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
scheduler=scheduler
)
# Convert tensor to PIL Image
image_np = (image_tensor.permute(1, 2, 0).numpy() * 255).astype(np.uint8)
image = Image.fromarray(image_np)
height, width = image.height, image.width
pipe.transformer.eval()
pipe.text_encoder.eval()
pipe.vae.eval()
self.dtype = dtype
# Process tracking tensor
tracking_maps = tracking_tensor.float() # [T, C, H, W]
tracking_maps = tracking_maps.to(device=self.device, dtype=dtype)
tracking_first_frame = tracking_maps[0:1] # Get first frame as [1, C, H, W]
height, width = tracking_first_frame.shape[2], tracking_first_frame.shape[3]
# 2. Set Scheduler.
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
pipe.to(self.device, dtype=dtype)
# pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.transformer.eval()
pipe.text_encoder.eval()
pipe.vae.eval()
pipe.transformer.gradient_checkpointing = False
print("Encoding tracking maps")
tracking_maps = tracking_maps.unsqueeze(0) # [B, T, C, H, W]
tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4) # [B, C, T, H, W]
tracking_latent_dist = pipe.vae.encode(tracking_maps).latent_dist
tracking_maps = tracking_latent_dist.sample() * pipe.vae.config.scaling_factor
tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
# 4. Generate the video frames based on the prompt.
video_generate = pipe(
prompt=prompt,
negative_prompt="The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion.",
image=image,
num_videos_per_prompt=num_videos_per_prompt,
num_inference_steps=num_inference_steps,
num_frames=49,
use_dynamic_cfg=True,
guidance_scale=guidance_scale,
generator=torch.Generator().manual_seed(seed),
tracking_maps=tracking_maps,
tracking_image=tracking_first_frame,
height=height,
width=width,
).frames[0]
# 5. Export the generated frames to a video file. fps must be 8 for original video.
output_path = output_path if output_path else f"result.mp4"
os.makedirs(os.path.dirname(output_path), exist_ok=True)
export_to_video(video_generate, output_path, fps=fps)
#========== camera parameters ==========#
def _set_camera_motion(self, camera_motion):
self.camera_motion = camera_motion
##============= SpatialTracker =============##
def generate_tracking_spatracker(self, video_tensor, density=70):
"""Generate tracking video
Args:
video_tensor (torch.Tensor): Input video tensor
Returns:
str: Path to tracking video
"""
print("Loading tracking models...")
# Load tracking model
tracker = SpaTrackerPredictor(
checkpoint=os.path.join(project_root, 'checkpoints/spaT_final.pth'),
interp_shape=(384, 576),
seq_length=12
).to(self.device)
# Load depth model
self.depth_preprocessor = DepthPreprocessor.from_pretrained("Intel/zoedepth-nyu-kitti")
self.depth_preprocessor.to(self.device)
try:
video = video_tensor.unsqueeze(0).to(self.device)
video_depths = []
for i in range(video_tensor.shape[0]):
frame = (video_tensor[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
depth = self.depth_preprocessor(Image.fromarray(frame))[0]
depth_tensor = transforms.ToTensor()(depth) # [1, H, W]
video_depths.append(depth_tensor)
video_depth = torch.stack(video_depths, dim=0).to(self.device)
# print("Video depth shape:", video_depth.shape)
segm_mask = np.ones((480, 720), dtype=np.uint8)
pred_tracks, pred_visibility, T_Firsts = tracker(
video * 255,
video_depth=video_depth,
grid_size=density,
backward_tracking=False,
depth_predictor=None,
grid_query_frame=0,
segm_mask=torch.from_numpy(segm_mask)[None, None].to(self.device),
wind_length=12,
progressive_tracking=False
)
return pred_tracks.squeeze(0), pred_visibility.squeeze(0), T_Firsts
finally:
# Clean up GPU memory
del tracker, self.depth_preprocessor
torch.cuda.empty_cache()
def visualize_tracking_spatracker(self, video, pred_tracks, pred_visibility, T_Firsts, save_tracking=True):
video = video.unsqueeze(0).to(self.device)
vis = Visualizer(save_dir=self.output_dir, grayscale=False, fps=24, pad_value=0)
msk_query = (T_Firsts == 0)
pred_tracks = pred_tracks[:,:,msk_query.squeeze()]
pred_visibility = pred_visibility[:,:,msk_query.squeeze()]
tracking_video = vis.visualize(video=video, tracks=pred_tracks,
visibility=pred_visibility, save_video=False,
filename="temp")
tracking_video = tracking_video.squeeze(0) # [T, C, H, W]
wide_list = list(tracking_video.unbind(0))
wide_list = [wide.permute(1, 2, 0).cpu().numpy() for wide in wide_list]
clip = ImageSequenceClip(wide_list, fps=self.fps)
tracking_path = None
if save_tracking:
try:
tracking_path = os.path.join(self.output_dir, "tracking_video.mp4")
clip.write_videofile(tracking_path, codec="libx264", fps=self.fps, logger=None)
print(f"Video saved to {tracking_path}")
except Exception as e:
print(f"Warning: Failed to save tracking video: {e}")
tracking_path = None
# Convert tracking_video back to tensor in range [0,1]
tracking_frames = np.array(list(clip.iter_frames())) / 255.0
tracking_video = torch.from_numpy(tracking_frames).permute(0, 3, 1, 2).float()
return tracking_path, tracking_video
##============= MoGe =============##
def valid_mask(self, pixels, W, H):
"""Check if pixels are within valid image bounds
Args:
pixels (numpy.ndarray): Pixel coordinates of shape [N, 2]
W (int): Image width
H (int): Image height
Returns:
numpy.ndarray: Boolean mask of valid pixels
"""
return ((pixels[:, 0] >= 0) & (pixels[:, 0] < W) & (pixels[:, 1] > 0) & \
(pixels[:, 1] < H))
def sort_points_by_depth(self, points, depths):
"""Sort points by depth values
Args:
points (numpy.ndarray): Points array of shape [N, 2]
depths (numpy.ndarray): Depth values of shape [N]
Returns:
tuple: (sorted_points, sorted_depths, sort_index)
"""
# Combine points and depths into a single array for sorting
combined = np.hstack((points, depths[:, None])) # Nx3 (points + depth)
# Sort by depth (last column) in descending order
sort_index = combined[:, -1].argsort()[::-1]
sorted_combined = combined[sort_index]
# Split back into points and depths
sorted_points = sorted_combined[:, :-1]
sorted_depths = sorted_combined[:, -1]
return sorted_points, sorted_depths, sort_index
def draw_rectangle(self, rgb, coord, side_length, color=(255, 0, 0)):
"""Draw a rectangle on the image
Args:
rgb (PIL.Image): Image to draw on
coord (tuple): Center coordinates (x, y)
side_length (int): Length of rectangle sides
color (tuple): RGB color tuple
"""
draw = ImageDraw.Draw(rgb)
# Calculate the bounding box of the rectangle
left_up_point = (coord[0] - side_length//2, coord[1] - side_length//2)
right_down_point = (coord[0] + side_length//2, coord[1] + side_length//2)
color = tuple(list(color))
draw.rectangle(
[left_up_point, right_down_point],
fill=tuple(color),
outline=tuple(color),
)
def visualize_tracking_moge(self, points, mask, save_tracking=True):
"""Visualize tracking results from MoGe model
Args:
points (numpy.ndarray): Points array of shape [T, H, W, 3]
mask (numpy.ndarray): Binary mask of shape [H, W]
save_tracking (bool): Whether to save tracking video
Returns:
tuple: (tracking_path, tracking_video)
- tracking_path (str): Path to saved tracking video, None if save_tracking is False
- tracking_video (torch.Tensor): Tracking visualization tensor of shape [T, C, H, W] in range [0,1]
"""
# Create color array
T, H, W, _ = points.shape
colors = np.zeros((H, W, 3), dtype=np.uint8)
# Set R channel - based on x coordinates (smaller on the left)
colors[:, :, 0] = np.tile(np.linspace(0, 255, W), (H, 1))
# Set G channel - based on y coordinates (smaller on the top)
colors[:, :, 1] = np.tile(np.linspace(0, 255, H), (W, 1)).T
# Set B channel - based on depth
z_values = points[0, :, :, 2] # get z values
inv_z = 1 / z_values # calculate 1/z
# Calculate 2% and 98% percentiles
p2 = np.percentile(inv_z, 2)
p98 = np.percentile(inv_z, 98)
# Normalize to [0,1] range
normalized_z = np.clip((inv_z - p2) / (p98 - p2), 0, 1)
colors[:, :, 2] = (normalized_z * 255).astype(np.uint8)
colors = colors.astype(np.uint8)
points = points.reshape(T, -1, 3)
colors = colors.reshape(-1, 3)
# Initialize list to store frames
frames = []
for i, pts_i in enumerate(tqdm(points, desc="rendering frames")):
pixels, depths = pts_i[..., :2], pts_i[..., 2]
pixels[..., 0] = pixels[..., 0] * W
pixels[..., 1] = pixels[..., 1] * H
pixels = pixels.astype(int)
valid = self.valid_mask(pixels, W, H)
frame_rgb = colors[valid]
pixels = pixels[valid]
depths = depths[valid]
img = Image.fromarray(np.uint8(np.zeros([H, W, 3])), mode="RGB")
sorted_pixels, _, sort_index = self.sort_points_by_depth(pixels, depths)
step = 1
sorted_pixels = sorted_pixels[::step]
sorted_rgb = frame_rgb[sort_index][::step]
for j in range(sorted_pixels.shape[0]):
self.draw_rectangle(
img,
coord=(sorted_pixels[j, 0], sorted_pixels[j, 1]),
side_length=2,
color=sorted_rgb[j],
)
frames.append(np.array(img))
# Convert frames to video tensor in range [0,1]
tracking_video = torch.from_numpy(np.stack(frames)).permute(0, 3, 1, 2).float() / 255.0
tracking_path = None
if save_tracking:
try:
tracking_path = os.path.join(self.output_dir, "tracking_video_moge.mp4")
# Convert back to uint8 for saving
uint8_frames = [frame.astype(np.uint8) for frame in frames]
clip = ImageSequenceClip(uint8_frames, fps=self.fps)
clip.write_videofile(tracking_path, codec="libx264", fps=self.fps, logger=None)
print(f"Video saved to {tracking_path}")
except Exception as e:
print(f"Warning: Failed to save tracking video: {e}")
tracking_path = None
return tracking_path, tracking_video
##============= CoTracker =============##
def generate_tracking_cotracker(self, video_tensor, density=70):
"""Generate tracking video
Args:
video_tensor (torch.Tensor): Input video tensor
Returns:
tuple: (pred_tracks, pred_visibility)
- pred_tracks (torch.Tensor): Tracking points with depth [T, N, 3]
- pred_visibility (torch.Tensor): Visibility mask [T, N, 1]
"""
# Generate tracking points
cotracker = torch.hub.load("facebookresearch/co-tracker", "cotracker3_offline").to(self.device)
# Load depth model
if not hasattr(self, 'depth_preprocessor') or self.depth_preprocessor is None:
self.depth_preprocessor = DepthPreprocessor.from_pretrained("Intel/zoedepth-nyu-kitti")
self.depth_preprocessor.to(self.device)
try:
video = video_tensor.unsqueeze(0).to(self.device)
# Process all frames to get depth maps
video_depths = []
for i in tqdm(range(video_tensor.shape[0]), desc="estimating depth"):
frame = (video_tensor[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
depth = self.depth_preprocessor(Image.fromarray(frame))[0]
depth_tensor = transforms.ToTensor()(depth) # [1, H, W]
video_depths.append(depth_tensor)
video_depth = torch.stack(video_depths, dim=0).to(self.device) # [T, 1, H, W]
# Get tracking points and visibility
print("tracking...")
pred_tracks, pred_visibility = cotracker(video, grid_size=density) # B T N 2, B T N 1
# Extract dimensions
B, T, N, _ = pred_tracks.shape
H, W = video_depth.shape[2], video_depth.shape[3]
# Create output tensor with depth
pred_tracks_with_depth = torch.zeros((B, T, N, 3), device=self.device)
pred_tracks_with_depth[:, :, :, :2] = pred_tracks # Copy x,y coordinates
# Vectorized approach to get depths for all points
# Reshape pred_tracks to process all batches and frames at once
flat_tracks = pred_tracks.reshape(B*T, N, 2)
# Clamp coordinates to valid image bounds
x_coords = flat_tracks[:, :, 0].clamp(0, W-1).long() # [B*T, N]
y_coords = flat_tracks[:, :, 1].clamp(0, H-1).long() # [B*T, N]
# Get depths for all points at once
# For each point in the flattened batch, get its depth from the corresponding frame
depths = torch.zeros((B*T, N), device=self.device)
for bt in range(B*T):
t = bt % T # Time index
depths[bt] = video_depth[t, 0, y_coords[bt], x_coords[bt]]
# Reshape depths back to [B, T, N] and assign to output tensor
pred_tracks_with_depth[:, :, :, 2] = depths.reshape(B, T, N)
return pred_tracks_with_depth.squeeze(0), pred_visibility.squeeze(0)
finally:
del cotracker
torch.cuda.empty_cache()
def visualize_tracking_cotracker(self, points, vis_mask=None, save_tracking=True, point_wise=10, video_size=(480, 720)):
"""Visualize tracking results from CoTracker
Args:
points (torch.Tensor): Points array of shape [T, N, 3]
vis_mask (torch.Tensor): Visibility mask of shape [T, N, 1]
save_tracking (bool): Whether to save tracking video
point_wise (int): Size of points in visualization
video_size (tuple): Render size (height, width)
Returns:
tuple: (tracking_path, tracking_video)
"""
# Move tensors to CPU and convert to numpy
if isinstance(points, torch.Tensor):
points = points.detach().cpu().numpy()
if vis_mask is not None and isinstance(vis_mask, torch.Tensor):
vis_mask = vis_mask.detach().cpu().numpy()
# Reshape if needed
if vis_mask.ndim == 3 and vis_mask.shape[2] == 1:
vis_mask = vis_mask.squeeze(-1)
T, N, _ = points.shape
H, W = video_size
if vis_mask is None:
vis_mask = np.ones((T, N), dtype=bool)
colors = np.zeros((N, 3), dtype=np.uint8)
first_frame_pts = points[0]
u_min, u_max = 0, W
u_normalized = np.clip((first_frame_pts[:, 0] - u_min) / (u_max - u_min), 0, 1)
colors[:, 0] = (u_normalized * 255).astype(np.uint8)
v_min, v_max = 0, H
v_normalized = np.clip((first_frame_pts[:, 1] - v_min) / (v_max - v_min), 0, 1)
colors[:, 1] = (v_normalized * 255).astype(np.uint8)
z_values = first_frame_pts[:, 2]
if np.all(z_values == 0):
colors[:, 2] = np.random.randint(0, 256, N, dtype=np.uint8)
else:
inv_z = 1 / (z_values + 1e-10)
p2 = np.percentile(inv_z, 2)
p98 = np.percentile(inv_z, 98)
normalized_z = np.clip((inv_z - p2) / (p98 - p2 + 1e-10), 0, 1)
colors[:, 2] = (normalized_z * 255).astype(np.uint8)
frames = []
for i in tqdm(range(T), desc="rendering frames"):
pts_i = points[i]
visibility = vis_mask[i]
pixels, depths = pts_i[visibility, :2], pts_i[visibility, 2]
pixels = pixels.astype(int)
in_frame = self.valid_mask(pixels, W, H)
pixels = pixels[in_frame]
depths = depths[in_frame]
frame_rgb = colors[visibility][in_frame]
img = Image.fromarray(np.zeros((H, W, 3), dtype=np.uint8), mode="RGB")
sorted_pixels, _, sort_index = self.sort_points_by_depth(pixels, depths)
sorted_rgb = frame_rgb[sort_index]
for j in range(sorted_pixels.shape[0]):
self.draw_rectangle(
img,
coord=(sorted_pixels[j, 0], sorted_pixels[j, 1]),
side_length=point_wise,
color=sorted_rgb[j],
)
frames.append(np.array(img))
# Convert frames to video tensor in range [0,1]
tracking_video = torch.from_numpy(np.stack(frames)).permute(0, 3, 1, 2).float() / 255.0
tracking_path = None
if save_tracking:
try:
tracking_path = os.path.join(self.output_dir, "tracking_video_cotracker.mp4")
# Convert back to uint8 for saving
uint8_frames = [frame.astype(np.uint8) for frame in frames]
clip = ImageSequenceClip(uint8_frames, fps=self.fps)
clip.write_videofile(tracking_path, codec="libx264", fps=self.fps, logger=None)
print(f"Video saved to {tracking_path}")
except Exception as e:
print(f"Warning: Failed to save tracking video: {e}")
tracking_path = None
return tracking_path, tracking_video
def apply_tracking(self, video_tensor, fps=8, tracking_tensor=None, img_cond_tensor=None, prompt=None, checkpoint_path=None, num_inference_steps=15):
"""Generate final video with motion transfer
Args:
video_tensor (torch.Tensor): Input video tensor [T,C,H,W]
fps (float): Input video FPS
tracking_tensor (torch.Tensor): Tracking video tensor [T,C,H,W]
image_tensor (torch.Tensor): First frame tensor [C,H,W] to use for generation
prompt (str): Generation prompt
checkpoint_path (str): Path to model checkpoint
"""
self.fps = fps
# Use first frame if no image provided
if img_cond_tensor is None:
img_cond_tensor = video_tensor[0]
# Generate final video
final_output = os.path.join(os.path.abspath(self.output_dir), "result.mp4")
self._infer(
prompt=prompt,
model_path=checkpoint_path,
tracking_tensor=tracking_tensor,
image_tensor=img_cond_tensor,
output_path=final_output,
num_inference_steps=num_inference_steps,
guidance_scale=6.0,
dtype=torch.bfloat16,
fps=self.fps
)
print(f"Final video generated successfully at: {final_output}")
def _set_object_motion(self, motion_type):
"""Set object motion type
Args:
motion_type (str): Motion direction ('up', 'down', 'left', 'right')
"""
self.object_motion = motion_type
class FirstFrameRepainter:
def __init__(self, gpu_id=0, output_dir='outputs'):
"""Initialize FirstFrameRepainter
Args:
gpu_id (int): GPU device ID
output_dir (str): Output directory path
"""
self.device = f"cuda:{gpu_id}"
self.output_dir = output_dir
self.max_depth = 65.0
os.makedirs(output_dir, exist_ok=True)
def repaint(self, image_tensor, prompt, depth_path=None, method="dav"):
"""Repaint first frame using Flux
Args:
image_tensor (torch.Tensor): Input image tensor [C,H,W]
prompt (str): Repaint prompt
depth_path (str): Path to depth image
method (str): depth estimator, "moge" or "dav" or "zoedepth"
Returns:
torch.Tensor: Repainted image tensor [C,H,W]
"""
print("Loading Flux model...")
# Load Flux model
flux_pipe = FluxControlPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Depth-dev",
torch_dtype=torch.bfloat16
).to(self.device)
# Get depth map
if depth_path is None:
if method == "moge":
self.moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl").to(self.device)
depth_map = self.moge_model.infer(image_tensor.to(self.device))["depth"]
depth_map = torch.clamp(depth_map, max=self.max_depth)
depth_normalized = 1.0 - (depth_map / self.max_depth)
depth_rgb = (depth_normalized * 255).cpu().numpy().astype(np.uint8)
control_image = Image.fromarray(depth_rgb).convert("RGB")
elif method == "zoedepth":
self.depth_preprocessor = DepthPreprocessor.from_pretrained("Intel/zoedepth-nyu-kitti")
self.depth_preprocessor.to(self.device)
image_np = (image_tensor.permute(1, 2, 0).numpy() * 255).astype(np.uint8)
control_image = self.depth_preprocessor(Image.fromarray(image_np))[0].convert("RGB")
control_image = control_image.point(lambda x: 255 - x) # the zoedepth depth is inverted
else:
self.depth_preprocessor = DepthPreprocessor.from_pretrained("depth-anything/Depth-Anything-V2-Large-hf")
self.depth_preprocessor.to(self.device)
image_np = (image_tensor.permute(1, 2, 0).numpy() * 255).astype(np.uint8)
control_image = self.depth_preprocessor(Image.fromarray(image_np))[0].convert("RGB")
else:
control_image = Image.open(depth_path).convert("RGB")
try:
repainted_image = flux_pipe(
prompt=prompt,
control_image=control_image,
height=480,
width=720,
num_inference_steps=30,
guidance_scale=7.5,
).images[0]
# Save repainted image
repainted_image.save(os.path.join(self.output_dir, "temp_repainted.png"))
# Convert PIL Image to tensor
transform = transforms.Compose([
transforms.ToTensor()
])
repainted_tensor = transform(repainted_image)
return repainted_tensor
finally:
# Clean up GPU memory
del flux_pipe
if method == "moge":
del self.moge_model
else:
del self.depth_preprocessor
torch.cuda.empty_cache()
class CameraMotionGenerator:
def __init__(self, motion_type, frame_num=49, H=480, W=720, fx=None, fy=None, fov=55, device='cuda'):
self.motion_type = motion_type
self.frame_num = frame_num
self.fov = fov
self.device = device
self.W = W
self.H = H
self.intr = torch.tensor([
[0, 0, W / 2],
[0, 0, H / 2],
[0, 0, 1]
], dtype=torch.float32, device=device)
# if fx, fy not provided
if not fx or not fy:
fov_rad = math.radians(fov)
fx = fy = (W / 2) / math.tan(fov_rad / 2)
self.intr[0, 0] = fx
self.intr[1, 1] = fy
self.extr = torch.eye(4, device=device)
def s2w_vggt(self, points, extrinsics, intrinsics):
"""
Transform points from pixel coordinates to world coordinates
Args:
points: Point cloud data of shape [T, N, 3] in uvz format
extrinsics: Camera extrinsic matrices [B, T, 3, 4] or [T, 3, 4]
intrinsics: Camera intrinsic matrices [B, T, 3, 3] or [T, 3, 3]
Returns:
world_points: Point cloud in world coordinates [T, N, 3]
"""
if isinstance(points, torch.Tensor):
points = points.detach().cpu().numpy()
if isinstance(extrinsics, torch.Tensor):
extrinsics = extrinsics.detach().cpu().numpy()
# Handle batch dimension
if extrinsics.ndim == 4: # [B, T, 3, 4]
extrinsics = extrinsics[0] # Take first batch
if isinstance(intrinsics, torch.Tensor):
intrinsics = intrinsics.detach().cpu().numpy()
# Handle batch dimension
if intrinsics.ndim == 4: # [B, T, 3, 3]
intrinsics = intrinsics[0] # Take first batch
T, N, _ = points.shape
world_points = np.zeros_like(points)
# Extract uvz coordinates
uvz = points
valid_mask = uvz[..., 2] > 0
# Create homogeneous coordinates [u, v, 1]
uv_homogeneous = np.concatenate([uvz[..., :2], np.ones((T, N, 1))], axis=-1)
# Transform from pixel to camera coordinates
for i in range(T):
K = intrinsics[i]
K_inv = np.linalg.inv(K)
R = extrinsics[i, :, :3]
t = extrinsics[i, :, 3]
R_inv = np.linalg.inv(R)
valid_indices = np.where(valid_mask[i])[0]
if len(valid_indices) > 0:
valid_uv = uv_homogeneous[i, valid_indices]
valid_z = uvz[i, valid_indices, 2]
valid_xyz_camera = valid_uv @ K_inv.T
valid_xyz_camera = valid_xyz_camera * valid_z[:, np.newaxis]
# Transform from camera to world coordinates: X_world = R^-1 * (X_camera - t)
valid_world_points = (valid_xyz_camera - t) @ R_inv.T
world_points[i, valid_indices] = valid_world_points
return world_points
def w2s_vggt(self, world_points, extrinsics, intrinsics, poses=None):
"""
Project points from world coordinates to camera view
Args:
world_points: Point cloud in world coordinates [T, N, 3]
extrinsics: Original camera extrinsic matrices [B, T, 3, 4] or [T, 3, 4]
intrinsics: Camera intrinsic matrices [B, T, 3, 3] or [T, 3, 3]
poses: Camera pose matrices [T, 4, 4], if None use first frame extrinsics
Returns:
camera_points: Point cloud in camera coordinates [T, N, 3] in uvz format
"""
if isinstance(world_points, torch.Tensor):
world_points = world_points.detach().cpu().numpy()
if isinstance(extrinsics, torch.Tensor):
extrinsics = extrinsics.detach().cpu().numpy()
if extrinsics.ndim == 4:
extrinsics = extrinsics[0]
if isinstance(intrinsics, torch.Tensor):
intrinsics = intrinsics.detach().cpu().numpy()
if intrinsics.ndim == 4:
intrinsics = intrinsics[0]
T, N, _ = world_points.shape
# If no poses provided, use first frame extrinsics
if poses is None:
pose1 = np.eye(4)
pose1[:3, :3] = extrinsics[0, :, :3]
pose1[:3, 3] = extrinsics[0, :, 3]
camera_poses = np.tile(pose1[np.newaxis, :, :], (T, 1, 1))
else:
if isinstance(poses, torch.Tensor):
camera_poses = poses.cpu().numpy()
else:
camera_poses = poses
# Scale translation by 1/5
scaled_poses = camera_poses.copy()
scaled_poses[:, :3, 3] = camera_poses[:, :3, 3] / 5.0
camera_poses = scaled_poses
# Add homogeneous coordinates
ones = np.ones([T, N, 1])
world_points_hom = np.concatenate([world_points, ones], axis=-1)
# Transform points using batch matrix multiplication
pts_cam_hom = np.matmul(world_points_hom, np.transpose(camera_poses, (0, 2, 1)))
pts_cam = pts_cam_hom[..., :3]
# Extract depth information
depths = pts_cam[..., 2:3]
valid_mask = depths[..., 0] > 0
# Normalize coordinates
normalized_pts = pts_cam / (depths + 1e-10)
# Apply intrinsic matrix for projection
pts_pixel = np.matmul(normalized_pts, np.transpose(intrinsics, (0, 2, 1)))
# Extract pixel coordinates
u = pts_pixel[..., 0:1]
v = pts_pixel[..., 1:2]
# Set invalid points to zero
u[~valid_mask] = 0
v[~valid_mask] = 0
depths[~valid_mask] = 0
# Return points in uvz format
result = np.concatenate([u, v, depths], axis=-1)
return torch.from_numpy(result)
def w2s_moge(self, pts, poses):
if isinstance(poses, np.ndarray):
poses = torch.from_numpy(poses)
assert poses.shape[0] == self.frame_num
poses = poses.to(torch.float32).to(self.device)
T, N, _ = pts.shape # (T, N, 3)
intr = self.intr.unsqueeze(0).repeat(self.frame_num, 1, 1)
ones = torch.ones((T, N, 1), device=self.device, dtype=pts.dtype)
points_world_h = torch.cat([pts, ones], dim=-1)
points_camera_h = torch.bmm(poses, points_world_h.permute(0, 2, 1))
points_camera = points_camera_h[:, :3, :].permute(0, 2, 1)
points_image_h = torch.bmm(points_camera, intr.permute(0, 2, 1))
uv = points_image_h[:, :, :2] / points_image_h[:, :, 2:3]
depth = points_camera[:, :, 2:3] # (T, N, 1)
uvd = torch.cat([uv, depth], dim=-1) # (T, N, 3)
return uvd
def set_intr(self, K):
if isinstance(K, np.ndarray):
K = torch.from_numpy(K)
self.intr = K.to(self.device)
def set_extr(self, extr):
if isinstance(extr, np.ndarray):
extr = torch.from_numpy(extr)
self.extr = extr.to(self.device)
def rot_poses(self, angle, axis='y'):
"""Generate a single rotation matrix
Args:
angle (float): Rotation angle in degrees
axis (str): Rotation axis ('x', 'y', or 'z')
Returns:
torch.Tensor: Single rotation matrix [4, 4]
"""
angle_rad = math.radians(angle)
cos_theta = torch.cos(torch.tensor(angle_rad))
sin_theta = torch.sin(torch.tensor(angle_rad))
if axis == 'x':
rot_mat = torch.tensor([
[1, 0, 0, 0],
[0, cos_theta, -sin_theta, 0],
[0, sin_theta, cos_theta, 0],
[0, 0, 0, 1]
], dtype=torch.float32)
elif axis == 'y':
rot_mat = torch.tensor([
[cos_theta, 0, sin_theta, 0],
[0, 1, 0, 0],
[-sin_theta, 0, cos_theta, 0],
[0, 0, 0, 1]
], dtype=torch.float32)
elif axis == 'z':
rot_mat = torch.tensor([
[cos_theta, -sin_theta, 0, 0],
[sin_theta, cos_theta, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
], dtype=torch.float32)
else:
raise ValueError("Invalid axis value. Choose 'x', 'y', or 'z'.")
return rot_mat.to(self.device)
def trans_poses(self, dx, dy, dz):
"""
params:
- dx: float, displacement along x axis。
- dy: float, displacement along y axis。
- dz: float, displacement along z axis。
ret:
- matrices: torch.Tensor
"""
trans_mats = torch.eye(4).unsqueeze(0).repeat(self.frame_num, 1, 1) # (n, 4, 4)
delta_x = dx / (self.frame_num - 1)
delta_y = dy / (self.frame_num - 1)
delta_z = dz / (self.frame_num - 1)
for i in range(self.frame_num):
trans_mats[i, 0, 3] = i * delta_x
trans_mats[i, 1, 3] = i * delta_y
trans_mats[i, 2, 3] = i * delta_z
return trans_mats.to(self.device)
def _look_at(self, camera_position, target_position):
# look at direction
direction = target_position - camera_position
direction /= np.linalg.norm(direction)
# calculate rotation matrix
up = np.array([0, 1, 0])
right = np.cross(up, direction)
right /= np.linalg.norm(right)
up = np.cross(direction, right)
rotation_matrix = np.vstack([right, up, direction])
rotation_matrix = np.linalg.inv(rotation_matrix)
return rotation_matrix
def spiral_poses(self, radius, forward_ratio = 0.5, backward_ratio = 0.5, rotation_times = 0.1, look_at_times = 0.5):
"""Generate spiral camera poses
Args:
radius (float): Base radius of the spiral
forward_ratio (float): Scale factor for forward motion
backward_ratio (float): Scale factor for backward motion
rotation_times (float): Number of rotations to complete
look_at_times (float): Scale factor for look-at point distance
Returns:
torch.Tensor: Camera poses of shape [num_frames, 4, 4]
"""
# Generate spiral trajectory
t = np.linspace(0, 1, self.frame_num)
r = np.sin(np.pi * t) * radius * rotation_times
theta = 2 * np.pi * t
# Calculate camera positions
# Limit y motion for better floor/sky view
y = r * np.cos(theta) * 0.3
x = r * np.sin(theta)
z = -r
z[z < 0] *= forward_ratio
z[z > 0] *= backward_ratio
# Set look-at target
target_pos = np.array([0, 0, radius * look_at_times])
cam_pos = np.vstack([x, y, z]).T
cam_poses = []
for pos in cam_pos:
rot_mat = self._look_at(pos, target_pos)
trans_mat = np.eye(4)
trans_mat[:3, :3] = rot_mat
trans_mat[:3, 3] = pos
cam_poses.append(trans_mat[None])
camera_poses = np.concatenate(cam_poses, axis=0)
return torch.from_numpy(camera_poses).to(self.device)
def get_default_motion(self):
"""Parse motion parameters and generate corresponding motion matrices
Supported formats:
- trans <dx> <dy> <dz> [start_frame] [end_frame]: Translation motion
- rot <axis> <angle> [start_frame] [end_frame]: Rotation motion
- spiral <radius> [start_frame] [end_frame]: Spiral motion
Multiple transformations can be combined using semicolon (;) as separator:
e.g., "trans 0 0 0.5 0 30; rot x 25 0 30; trans 0.1 0 0 30 48"
Note:
- start_frame and end_frame are optional
- frame range: 0-49 (will be clamped to this range)
- if not specified, defaults to 0-49
- frames after end_frame will maintain the final transformation
- for combined transformations, they are applied in sequence
- moving left, up and zoom out is positive in video
Returns:
torch.Tensor: Motion matrices [num_frames, 4, 4]
"""
if not isinstance(self.motion_type, str):
raise ValueError(f'camera_motion must be a string, but got {type(self.motion_type)}')
# Split combined transformations
transform_sequences = [s.strip() for s in self.motion_type.split(';')]
# Initialize the final motion matrices
final_motion = torch.eye(4, device=self.device).unsqueeze(0).repeat(49, 1, 1)
# Process each transformation in sequence
for transform in transform_sequences:
params = transform.lower().split()
if not params:
continue
motion_type = params[0]
# Default frame range
start_frame = 0
end_frame = 48 # 49 frames in total (0-48)
if motion_type == 'trans':
# Parse translation parameters
if len(params) not in [4, 6]:
raise ValueError(f"trans motion requires 3 or 5 parameters: 'trans <dx> <dy> <dz>' or 'trans <dx> <dy> <dz> <start_frame> <end_frame>', got: {transform}")
dx, dy, dz = map(float, params[1:4])
if len(params) == 6:
start_frame = max(0, min(48, int(params[4])))
end_frame = max(0, min(48, int(params[5])))
if start_frame > end_frame:
start_frame, end_frame = end_frame, start_frame
# Generate current transformation
current_motion = torch.eye(4, device=self.device).unsqueeze(0).repeat(49, 1, 1)
for frame_idx in range(49):
if frame_idx < start_frame:
continue
elif frame_idx <= end_frame:
t = (frame_idx - start_frame) / (end_frame - start_frame)
current_motion[frame_idx, :3, 3] = torch.tensor([dx, dy, dz], device=self.device) * t
else:
current_motion[frame_idx] = current_motion[end_frame]
# Combine with previous transformations
final_motion = torch.matmul(final_motion, current_motion)
elif motion_type == 'rot':
# Parse rotation parameters
if len(params) not in [3, 5]:
raise ValueError(f"rot motion requires 2 or 4 parameters: 'rot <axis> <angle>' or 'rot <axis> <angle> <start_frame> <end_frame>', got: {transform}")
axis = params[1]
if axis not in ['x', 'y', 'z']:
raise ValueError(f"Invalid rotation axis '{axis}', must be 'x', 'y' or 'z'")
angle = float(params[2])
if len(params) == 5:
start_frame = max(0, min(48, int(params[3])))
end_frame = max(0, min(48, int(params[4])))
if start_frame > end_frame:
start_frame, end_frame = end_frame, start_frame
current_motion = torch.eye(4, device=self.device).unsqueeze(0).repeat(49, 1, 1)
for frame_idx in range(49):
if frame_idx < start_frame:
continue
elif frame_idx <= end_frame:
t = (frame_idx - start_frame) / (end_frame - start_frame)
current_angle = angle * t
current_motion[frame_idx] = self.rot_poses(current_angle, axis)
else:
current_motion[frame_idx] = current_motion[end_frame]
# Combine with previous transformations
final_motion = torch.matmul(final_motion, current_motion)
elif motion_type == 'spiral':
# Parse spiral motion parameters
if len(params) not in [2, 4]:
raise ValueError(f"spiral motion requires 1 or 3 parameters: 'spiral <radius>' or 'spiral <radius> <start_frame> <end_frame>', got: {transform}")
radius = float(params[1])
if len(params) == 4:
start_frame = max(0, min(48, int(params[2])))
end_frame = max(0, min(48, int(params[3])))
if start_frame > end_frame:
start_frame, end_frame = end_frame, start_frame
current_motion = torch.eye(4, device=self.device).unsqueeze(0).repeat(49, 1, 1)
spiral_motion = self.spiral_poses(radius)
for frame_idx in range(49):
if frame_idx < start_frame:
continue
elif frame_idx <= end_frame:
t = (frame_idx - start_frame) / (end_frame - start_frame)
idx = int(t * (len(spiral_motion) - 1))
current_motion[frame_idx] = spiral_motion[idx]
else:
current_motion[frame_idx] = current_motion[end_frame]
# Combine with previous transformations
final_motion = torch.matmul(final_motion, current_motion)
else:
raise ValueError(f'camera_motion type must be in [trans, spiral, rot], but got {motion_type}')
return final_motion
class ObjectMotionGenerator:
def __init__(self, device="cuda:0"):
self.device = device
self.num_frames = 49
def _get_points_in_mask(self, pred_tracks, mask):
"""Get points that lie within the mask
Args:
pred_tracks (torch.Tensor): Point trajectories [num_frames, num_points, 3]
mask (torch.Tensor): Binary mask [H, W]
Returns:
torch.Tensor: Boolean mask for selected points [num_points]
"""
first_frame_points = pred_tracks[0] # [num_points, 3]
xy_points = first_frame_points[:, :2] # [num_points, 2]
xy_pixels = xy_points.round().long()
xy_pixels[:, 0].clamp_(0, mask.shape[1] - 1)
xy_pixels[:, 1].clamp_(0, mask.shape[0] - 1)
points_in_mask = mask[xy_pixels[:, 1], xy_pixels[:, 0]]
return points_in_mask
def apply_motion(self, pred_tracks, mask, motion_type, distance, num_frames=49, tracking_method="spatracker"):
self.num_frames = num_frames
pred_tracks = pred_tracks.to(self.device).float()
mask = mask.to(self.device)
template = {
'up': ('trans', torch.tensor([0, -1, 0])),
'down': ('trans', torch.tensor([0, 1, 0])),
'left': ('trans', torch.tensor([-1, 0, 0])),
'right': ('trans', torch.tensor([1, 0, 0])),
'front': ('trans', torch.tensor([0, 0, 1])),
'back': ('trans', torch.tensor([0, 0, -1])),
'rot': ('rot', None) # rotate around y axis
}
if motion_type not in template:
raise ValueError(f"unknown motion type: {motion_type}")
motion_type, base_vec = template[motion_type]
if base_vec is not None:
base_vec = base_vec.to(self.device) * distance
if tracking_method == "moge":
T, H, W, _ = pred_tracks.shape
valid_selected = ~torch.any(torch.isnan(pred_tracks[0]), dim=2) & mask
points = pred_tracks[0][valid_selected].reshape(-1, 3)
else:
points_in_mask = self._get_points_in_mask(pred_tracks, mask)
points = pred_tracks[0, points_in_mask]
center = points.mean(dim=0)
motions = []
for frame_idx in range(num_frames):
t = frame_idx / (num_frames - 1)
current_motion = torch.eye(4, device=self.device)
current_motion[:3, 3] = -center
motion_mat = torch.eye(4, device=self.device)
if motion_type == 'trans':
motion_mat[:3, 3] = base_vec * t
else: # 'rot'
angle_rad = torch.deg2rad(torch.tensor(distance * t, device=self.device))
cos_t = torch.cos(angle_rad)
sin_t = torch.sin(angle_rad)
motion_mat[0, 0] = cos_t
motion_mat[0, 2] = sin_t
motion_mat[2, 0] = -sin_t
motion_mat[2, 2] = cos_t
current_motion = motion_mat @ current_motion
current_motion[:3, 3] += center
motions.append(current_motion)
motions = torch.stack(motions) # [num_frames, 4, 4]
if tracking_method == "moge":
modified_tracks = pred_tracks.clone().reshape(T, -1, 3)
valid_selected = valid_selected.reshape([-1])
for frame_idx in range(self.num_frames):
motion_mat = motions[frame_idx]
if W > 1:
motion_mat = motion_mat.clone()
motion_mat[0, 3] /= W
motion_mat[1, 3] /= H
points = modified_tracks[frame_idx, valid_selected]
points_homo = torch.cat([points, torch.ones_like(points[:, :1])], dim=1)
transformed_points = torch.matmul(points_homo, motion_mat.T)
modified_tracks[frame_idx, valid_selected] = transformed_points[:, :3]
return modified_tracks.reshape(T, H, W, 3)
else:
points_in_mask = self._get_points_in_mask(pred_tracks, mask)
modified_tracks = pred_tracks.clone()
for frame_idx in range(pred_tracks.shape[0]):
motion_mat = motions[frame_idx]
points = modified_tracks[frame_idx, points_in_mask]
points_homo = torch.cat([points, torch.ones_like(points[:, :1])], dim=1)
transformed_points = torch.matmul(points_homo, motion_mat.T)
modified_tracks[frame_idx, points_in_mask] = transformed_points[:, :3]
return modified_tracks |