Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -262,199 +262,7 @@ def process_motion_transfer(source, prompt, mt_repaint_option, mt_repaint_image)
|
|
262 |
import traceback
|
263 |
print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
|
264 |
return None, None, None, None, None
|
265 |
-
|
266 |
-
def process_camera_control(source, prompt, camera_motion, tracking_method):
|
267 |
-
"""Process camera control task"""
|
268 |
-
try:
|
269 |
-
# 保存上传的文件
|
270 |
-
input_media_path = save_uploaded_file(source)
|
271 |
-
if input_media_path is None:
|
272 |
-
return None, None, None
|
273 |
-
|
274 |
-
print(f"DEBUG: Camera motion: '{camera_motion}'")
|
275 |
-
print(f"DEBUG: Tracking method: '{tracking_method}'")
|
276 |
-
|
277 |
-
das = get_das_pipeline()
|
278 |
-
video_tensor, fps, is_video = load_media(input_media_path)
|
279 |
-
das.fps = fps # 设置 das.fps 为 load_media 返回的 fps
|
280 |
-
|
281 |
-
if not is_video:
|
282 |
-
tracking_method = "moge"
|
283 |
-
print("Image input detected, switching to MoGe")
|
284 |
-
|
285 |
-
cam_motion = CameraMotionGenerator(camera_motion)
|
286 |
-
repaint_img_tensor = None
|
287 |
-
tracking_tensor = None
|
288 |
-
|
289 |
-
if tracking_method == "moge":
|
290 |
-
moge = get_moge_model()
|
291 |
-
|
292 |
-
infer_result = moge.infer(video_tensor[0].to(das.device)) # [C, H, W] in range [0,1]
|
293 |
-
H, W = infer_result["points"].shape[0:2]
|
294 |
-
pred_tracks = infer_result["points"].unsqueeze(0).repeat(49, 1, 1, 1) #[T, H, W, 3]
|
295 |
-
cam_motion.set_intr(infer_result["intrinsics"])
|
296 |
-
|
297 |
-
if camera_motion:
|
298 |
-
poses = cam_motion.get_default_motion() # shape: [49, 4, 4]
|
299 |
-
print("Camera motion applied")
|
300 |
-
else:
|
301 |
-
poses = torch.eye(4).unsqueeze(0).repeat(49, 1, 1)
|
302 |
-
|
303 |
-
pred_tracks_flatten = pred_tracks.reshape(video_tensor.shape[0], H*W, 3)
|
304 |
-
pred_tracks = cam_motion.w2s(pred_tracks_flatten, poses).reshape([video_tensor.shape[0], H, W, 3]) # [T, H, W, 3]
|
305 |
-
|
306 |
-
_, tracking_tensor = das.visualize_tracking_moge(
|
307 |
-
pred_tracks.cpu().numpy(),
|
308 |
-
infer_result["mask"].cpu().numpy()
|
309 |
-
)
|
310 |
-
print('Export tracking video via MoGe')
|
311 |
-
else:
|
312 |
-
# 使用在CPU上运行的cotracker
|
313 |
-
pred_tracks, pred_visibility = generate_tracking_cotracker(video_tensor)
|
314 |
-
|
315 |
-
# 使用封装的 VGGT 处理函数
|
316 |
-
extr, intr = process_vggt(video_tensor)
|
317 |
-
|
318 |
-
cam_motion.set_intr(intr)
|
319 |
-
cam_motion.set_extr(extr)
|
320 |
-
|
321 |
-
if camera_motion:
|
322 |
-
poses = cam_motion.get_default_motion() # shape: [49, 4, 4]
|
323 |
-
pred_tracks_world = cam_motion.s2w_vggt(pred_tracks, extr, intr)
|
324 |
-
pred_tracks = cam_motion.w2s_vggt(pred_tracks_world, extr, intr, poses) # [T, N, 3]
|
325 |
-
print("Camera motion applied")
|
326 |
-
|
327 |
-
tracking_path, tracking_tensor = das.visualize_tracking_cotracker(pred_tracks, pred_visibility)
|
328 |
-
print('Export tracking video via cotracker')
|
329 |
-
|
330 |
-
# 返回处理结果,但不应用跟踪
|
331 |
-
return tracking_path, video_tensor, tracking_tensor, repaint_img_tensor, fps
|
332 |
-
except Exception as e:
|
333 |
-
import traceback
|
334 |
-
print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
|
335 |
-
return None, None, None, None, None
|
336 |
-
|
337 |
-
def process_object_manipulation(source, prompt, object_motion, object_mask, tracking_method):
|
338 |
-
"""Process object manipulation task"""
|
339 |
-
try:
|
340 |
-
# Save uploaded files
|
341 |
-
input_image_path = save_uploaded_file(source)
|
342 |
-
if input_image_path is None:
|
343 |
-
return None, None, None, None, None
|
344 |
-
|
345 |
-
object_mask_path = save_uploaded_file(object_mask)
|
346 |
-
if object_mask_path is None:
|
347 |
-
print("Object mask not provided")
|
348 |
-
return None, None, None, None, None
|
349 |
|
350 |
-
das = get_das_pipeline()
|
351 |
-
video_tensor, fps, is_video = load_media(input_image_path)
|
352 |
-
das.fps = fps # 设置 das.fps 为 load_media 返回的 fps
|
353 |
-
|
354 |
-
if not is_video:
|
355 |
-
tracking_method = "moge"
|
356 |
-
print("Image input detected, switching to MoGe")
|
357 |
-
|
358 |
-
mask_image = Image.open(object_mask_path).convert('L')
|
359 |
-
mask_image = transforms.Resize((480, 720))(mask_image)
|
360 |
-
mask = torch.from_numpy(np.array(mask_image) > 127)
|
361 |
-
|
362 |
-
motion_generator = ObjectMotionGenerator(device=das.device)
|
363 |
-
repaint_img_tensor = None
|
364 |
-
tracking_tensor = None
|
365 |
-
|
366 |
-
if tracking_method == "moge":
|
367 |
-
moge = get_moge_model()
|
368 |
-
|
369 |
-
infer_result = moge.infer(video_tensor[0].to(das.device)) # [C, H, W] in range [0,1]
|
370 |
-
H, W = infer_result["points"].shape[0:2]
|
371 |
-
pred_tracks = infer_result["points"].unsqueeze(0).repeat(49, 1, 1, 1) #[T, H, W, 3]
|
372 |
-
|
373 |
-
pred_tracks = motion_generator.apply_motion(
|
374 |
-
pred_tracks=pred_tracks,
|
375 |
-
mask=mask,
|
376 |
-
motion_type=object_motion,
|
377 |
-
distance=50,
|
378 |
-
num_frames=49,
|
379 |
-
tracking_method="moge"
|
380 |
-
)
|
381 |
-
print(f"Object motion '{object_motion}' applied using provided mask")
|
382 |
-
poses = torch.eye(4).unsqueeze(0).repeat(49, 1, 1)
|
383 |
-
pred_tracks_flatten = pred_tracks.reshape(video_tensor.shape[0], H*W, 3)
|
384 |
-
|
385 |
-
cam_motion = CameraMotionGenerator(None)
|
386 |
-
cam_motion.set_intr(infer_result["intrinsics"])
|
387 |
-
pred_tracks = cam_motion.w2s(pred_tracks_flatten, poses).reshape([video_tensor.shape[0], H, W, 3]) # [T, H, W, 3]
|
388 |
-
|
389 |
-
_, tracking_tensor = das.visualize_tracking_moge(
|
390 |
-
pred_tracks.cpu().numpy(),
|
391 |
-
infer_result["mask"].cpu().numpy()
|
392 |
-
)
|
393 |
-
print('Export tracking video via MoGe')
|
394 |
-
else:
|
395 |
-
# 使用在CPU上运行的cotracker
|
396 |
-
pred_tracks, pred_visibility = generate_tracking_cotracker(video_tensor)
|
397 |
-
|
398 |
-
# 使用封装的 VGGT 处理函数
|
399 |
-
extr, intr = process_vggt(video_tensor)
|
400 |
-
|
401 |
-
pred_tracks = motion_generator.apply_motion(
|
402 |
-
pred_tracks=pred_tracks.squeeze(),
|
403 |
-
mask=mask,
|
404 |
-
motion_type=object_motion,
|
405 |
-
distance=50,
|
406 |
-
num_frames=49,
|
407 |
-
tracking_method="cotracker"
|
408 |
-
)
|
409 |
-
print(f"Object motion '{object_motion}' applied using provided mask")
|
410 |
-
|
411 |
-
tracking_path, tracking_tensor = das.visualize_tracking_cotracker(pred_tracks.unsqueeze(0), pred_visibility)
|
412 |
-
print('Export tracking video via cotracker')
|
413 |
-
|
414 |
-
# 返回处理结果,但不应用跟踪
|
415 |
-
return tracking_path, video_tensor, tracking_tensor, repaint_img_tensor, fps
|
416 |
-
except Exception as e:
|
417 |
-
import traceback
|
418 |
-
print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
|
419 |
-
return None, None, None, None, None
|
420 |
-
|
421 |
-
def process_mesh_animation(source, prompt, tracking_video, ma_repaint_option, ma_repaint_image):
|
422 |
-
"""Process mesh animation task"""
|
423 |
-
try:
|
424 |
-
# Save uploaded files
|
425 |
-
input_video_path = save_uploaded_file(source)
|
426 |
-
if input_video_path is None:
|
427 |
-
return None, None, None, None, None
|
428 |
-
|
429 |
-
tracking_video_path = save_uploaded_file(tracking_video)
|
430 |
-
if tracking_video_path is None:
|
431 |
-
return None, None, None, None, None
|
432 |
-
|
433 |
-
das = get_das_pipeline()
|
434 |
-
video_tensor, fps, is_video = load_media(input_video_path)
|
435 |
-
das.fps = fps # 设置 das.fps 为 load_media 返回的 fps
|
436 |
-
|
437 |
-
tracking_tensor, tracking_fps, _ = load_media(tracking_video_path)
|
438 |
-
repaint_img_tensor = None
|
439 |
-
if ma_repaint_image is not None:
|
440 |
-
repaint_path = save_uploaded_file(ma_repaint_image)
|
441 |
-
repaint_img_tensor, _, _ = load_media(repaint_path)
|
442 |
-
repaint_img_tensor = repaint_img_tensor[0] # 获取第一帧
|
443 |
-
elif ma_repaint_option == "Yes":
|
444 |
-
repainter = FirstFrameRepainter(gpu_id=GPU_ID, output_dir=OUTPUT_DIR)
|
445 |
-
repaint_img_tensor = repainter.repaint(
|
446 |
-
video_tensor[0],
|
447 |
-
prompt=prompt,
|
448 |
-
depth_path=None
|
449 |
-
)
|
450 |
-
|
451 |
-
# 直接返回上传的跟踪视频路径,而不是生成新的跟踪视频
|
452 |
-
return tracking_video_path, video_tensor, tracking_tensor, repaint_img_tensor, fps
|
453 |
-
except Exception as e:
|
454 |
-
import traceback
|
455 |
-
print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
|
456 |
-
return None, None, None, None, None
|
457 |
-
|
458 |
def generate_tracking_cotracker(video_tensor, density=30):
|
459 |
"""在CPU上生成跟踪视频,只使用第一帧的深度信息,使用矩阵运算提高效率
|
460 |
|
@@ -674,18 +482,6 @@ with gr.Blocks(title="Diffusion as Shader") as demo:
|
|
674 |
apply_tracking_btn = gr.Button("Generate Video", variant="primary", size="lg", interactive=False)
|
675 |
output_video = gr.Video(label="Generated Video")
|
676 |
|
677 |
-
examples_list = load_examples()
|
678 |
-
if examples_list:
|
679 |
-
with gr.Blocks() as examples_block:
|
680 |
-
gr.Examples(
|
681 |
-
examples=examples_list,
|
682 |
-
inputs=[source_preview, mt_repaint_preview, common_prompt, tracking_video, output_video],
|
683 |
-
outputs=[source_preview, mt_repaint_preview, common_prompt, tracking_video, output_video],
|
684 |
-
fn=lambda *args: args,
|
685 |
-
cache_examples=True,
|
686 |
-
label="Examples"
|
687 |
-
)
|
688 |
-
|
689 |
with left_column:
|
690 |
source_upload = gr.UploadButton("1. Upload Source", file_types=["image", "video"])
|
691 |
gr.Markdown("Upload a video or image, We will extract the motion and space structure from it")
|
@@ -749,10 +545,22 @@ with gr.Blocks(title="Diffusion as Shader") as demo:
|
|
749 |
)
|
750 |
|
751 |
with gr.TabItem("Camera Control"):
|
752 |
-
gr.Markdown("Camera Control is not available in Huggingface Space, please deploy our GitHub project on your own machine")
|
753 |
|
754 |
with gr.TabItem("Object Manipulation"):
|
755 |
-
gr.Markdown("Object Manipulation is not available in Huggingface Space, please deploy our GitHub project on your own machine")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
756 |
|
757 |
|
758 |
# Launch interface
|
|
|
262 |
import traceback
|
263 |
print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
|
264 |
return None, None, None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
def generate_tracking_cotracker(video_tensor, density=30):
|
267 |
"""在CPU上生成跟踪视频,只使用第一帧的深度信息,使用矩阵运算提高效率
|
268 |
|
|
|
482 |
apply_tracking_btn = gr.Button("Generate Video", variant="primary", size="lg", interactive=False)
|
483 |
output_video = gr.Video(label="Generated Video")
|
484 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
with left_column:
|
486 |
source_upload = gr.UploadButton("1. Upload Source", file_types=["image", "video"])
|
487 |
gr.Markdown("Upload a video or image, We will extract the motion and space structure from it")
|
|
|
545 |
)
|
546 |
|
547 |
with gr.TabItem("Camera Control"):
|
548 |
+
gr.Markdown("Camera Control is not available in Huggingface Space, please deploy our [GitHub project](https://github.com/IGL-HKUST/DiffusionAsShader) on your own machine")
|
549 |
|
550 |
with gr.TabItem("Object Manipulation"):
|
551 |
+
gr.Markdown("Object Manipulation is not available in Huggingface Space, please deploy our [GitHub project](https://github.com/IGL-HKUST/DiffusionAsShader) on your own machine")
|
552 |
+
|
553 |
+
examples_list = load_examples()
|
554 |
+
if examples_list:
|
555 |
+
with gr.Blocks() as examples_block:
|
556 |
+
gr.Examples(
|
557 |
+
examples=examples_list,
|
558 |
+
inputs=[source_preview, mt_repaint_preview, common_prompt, tracking_video, output_video],
|
559 |
+
outputs=[source_preview, mt_repaint_preview, common_prompt, tracking_video, output_video],
|
560 |
+
fn=lambda *args: args,
|
561 |
+
cache_examples=True,
|
562 |
+
label="Examples"
|
563 |
+
)
|
564 |
|
565 |
|
566 |
# Launch interface
|