Spaces:
Runtime error
Runtime error
File size: 9,838 Bytes
e7358e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import os
os.system("pip install gradio==2.4.6")
import gradio as gr
from pathlib import Path
os.system("pip install gsutil")
os.system("git clone --branch=main https://github.com/google-research/t5x")
os.system("mv t5x t5x_tmp; mv t5x_tmp/* .; rm -r t5x_tmp")
os.system("sed -i 's:jax\[tpu\]:jax:' setup.py")
os.system("python3 -m pip install -e .")
# install mt3
os.system("git clone --branch=main https://github.com/magenta/mt3")
os.system("mv mt3 mt3_tmp; mv mt3_tmp/* .; rm -r mt3_tmp")
os.system("python3 -m pip install -e .")
# copy checkpoints
os.system("gsutil -q -m cp -r gs://mt3/checkpoints .")
# copy soundfont (originally from https://sites.google.com/site/soundfonts4u)
os.system("gsutil -q -m cp gs://magentadata/soundfonts/SGM-v2.01-Sal-Guit-Bass-V1.3.sf2 .")
#@title Imports and Definitions
import functools
import os
import numpy as np
import tensorflow.compat.v2 as tf
import functools
import gin
import jax
import librosa
import note_seq
import seqio
import t5
import t5x
from mt3 import metrics_utils
from mt3 import models
from mt3 import network
from mt3 import note_sequences
from mt3 import preprocessors
from mt3 import spectrograms
from mt3 import vocabularies
import nest_asyncio
nest_asyncio.apply()
SAMPLE_RATE = 16000
SF2_PATH = 'SGM-v2.01-Sal-Guit-Bass-V1.3.sf2'
def upload_audio(audio, sample_rate):
return note_seq.audio_io.wav_data_to_samples_librosa(
audio, sample_rate=sample_rate)
class InferenceModel(object):
"""Wrapper of T5X model for music transcription."""
def __init__(self, checkpoint_path, model_type='mt3'):
# Model Constants.
if model_type == 'ismir2021':
num_velocity_bins = 127
self.encoding_spec = note_sequences.NoteEncodingSpec
self.inputs_length = 512
elif model_type == 'mt3':
num_velocity_bins = 1
self.encoding_spec = note_sequences.NoteEncodingWithTiesSpec
self.inputs_length = 256
else:
raise ValueError('unknown model_type: %s' % model_type)
gin_files = ['/home/user/app/mt3/gin/model.gin',
'/home/user/app/mt3/gin/mt3.gin']
self.batch_size = 8
self.outputs_length = 1024
self.sequence_length = {'inputs': self.inputs_length,
'targets': self.outputs_length}
self.partitioner = t5x.partitioning.ModelBasedPjitPartitioner(
model_parallel_submesh=(1, 1, 1, 1), num_partitions=1)
# Build Codecs and Vocabularies.
self.spectrogram_config = spectrograms.SpectrogramConfig()
self.codec = vocabularies.build_codec(
vocab_config=vocabularies.VocabularyConfig(
num_velocity_bins=num_velocity_bins))
self.vocabulary = vocabularies.vocabulary_from_codec(self.codec)
self.output_features = {
'inputs': seqio.ContinuousFeature(dtype=tf.float32, rank=2),
'targets': seqio.Feature(vocabulary=self.vocabulary),
}
# Create a T5X model.
self._parse_gin(gin_files)
self.model = self._load_model()
# Restore from checkpoint.
self.restore_from_checkpoint(checkpoint_path)
@property
def input_shapes(self):
return {
'encoder_input_tokens': (self.batch_size, self.inputs_length),
'decoder_input_tokens': (self.batch_size, self.outputs_length)
}
def _parse_gin(self, gin_files):
"""Parse gin files used to train the model."""
gin_bindings = [
'from __gin__ import dynamic_registration',
'from mt3 import vocabularies',
'VOCAB_CONFIG=@vocabularies.VocabularyConfig()',
'vocabularies.VocabularyConfig.num_velocity_bins=%NUM_VELOCITY_BINS'
]
with gin.unlock_config():
gin.parse_config_files_and_bindings(
gin_files, gin_bindings, finalize_config=False)
def _load_model(self):
"""Load up a T5X `Model` after parsing training gin config."""
model_config = gin.get_configurable(network.T5Config)()
module = network.Transformer(config=model_config)
return models.ContinuousInputsEncoderDecoderModel(
module=module,
input_vocabulary=self.output_features['inputs'].vocabulary,
output_vocabulary=self.output_features['targets'].vocabulary,
optimizer_def=t5x.adafactor.Adafactor(decay_rate=0.8, step_offset=0),
input_depth=spectrograms.input_depth(self.spectrogram_config))
def restore_from_checkpoint(self, checkpoint_path):
"""Restore training state from checkpoint, resets self._predict_fn()."""
train_state_initializer = t5x.utils.TrainStateInitializer(
optimizer_def=self.model.optimizer_def,
init_fn=self.model.get_initial_variables,
input_shapes=self.input_shapes,
partitioner=self.partitioner)
restore_checkpoint_cfg = t5x.utils.RestoreCheckpointConfig(
path=checkpoint_path, mode='specific', dtype='float32')
train_state_axes = train_state_initializer.train_state_axes
self._predict_fn = self._get_predict_fn(train_state_axes)
self._train_state = train_state_initializer.from_checkpoint_or_scratch(
[restore_checkpoint_cfg], init_rng=jax.random.PRNGKey(0))
@functools.lru_cache()
def _get_predict_fn(self, train_state_axes):
"""Generate a partitioned prediction function for decoding."""
def partial_predict_fn(params, batch, decode_rng):
return self.model.predict_batch_with_aux(
params, batch, decoder_params={'decode_rng': None})
return self.partitioner.partition(
partial_predict_fn,
in_axis_resources=(
train_state_axes.params,
t5x.partitioning.PartitionSpec('data',), None),
out_axis_resources=t5x.partitioning.PartitionSpec('data',)
)
def predict_tokens(self, batch, seed=0):
"""Predict tokens from preprocessed dataset batch."""
prediction, _ = self._predict_fn(
self._train_state.params, batch, jax.random.PRNGKey(seed))
return self.vocabulary.decode_tf(prediction).numpy()
def __call__(self, audio):
"""Infer note sequence from audio samples.
Args:
audio: 1-d numpy array of audio samples (16kHz) for a single example.
Returns:
A note_sequence of the transcribed audio.
"""
ds = self.audio_to_dataset(audio)
ds = self.preprocess(ds)
model_ds = self.model.FEATURE_CONVERTER_CLS(pack=False)(
ds, task_feature_lengths=self.sequence_length)
model_ds = model_ds.batch(self.batch_size)
inferences = (tokens for batch in model_ds.as_numpy_iterator()
for tokens in self.predict_tokens(batch))
predictions = []
for example, tokens in zip(ds.as_numpy_iterator(), inferences):
predictions.append(self.postprocess(tokens, example))
result = metrics_utils.event_predictions_to_ns(
predictions, codec=self.codec, encoding_spec=self.encoding_spec)
return result['est_ns']
def audio_to_dataset(self, audio):
"""Create a TF Dataset of spectrograms from input audio."""
frames, frame_times = self._audio_to_frames(audio)
return tf.data.Dataset.from_tensors({
'inputs': frames,
'input_times': frame_times,
})
def _audio_to_frames(self, audio):
"""Compute spectrogram frames from audio."""
frame_size = self.spectrogram_config.hop_width
padding = [0, frame_size - len(audio) % frame_size]
audio = np.pad(audio, padding, mode='constant')
frames = spectrograms.split_audio(audio, self.spectrogram_config)
num_frames = len(audio) // frame_size
times = np.arange(num_frames) / self.spectrogram_config.frames_per_second
return frames, times
def preprocess(self, ds):
pp_chain = [
functools.partial(
t5.data.preprocessors.split_tokens_to_inputs_length,
sequence_length=self.sequence_length,
output_features=self.output_features,
feature_key='inputs',
additional_feature_keys=['input_times']),
# Cache occurs here during training.
preprocessors.add_dummy_targets,
functools.partial(
preprocessors.compute_spectrograms,
spectrogram_config=self.spectrogram_config)
]
for pp in pp_chain:
ds = pp(ds)
return ds
def postprocess(self, tokens, example):
tokens = self._trim_eos(tokens)
start_time = example['input_times'][0]
# Round down to nearest symbolic token step.
start_time -= start_time % (1 / self.codec.steps_per_second)
return {
'est_tokens': tokens,
'start_time': start_time,
# Internal MT3 code expects raw inputs, not used here.
'raw_inputs': []
}
@staticmethod
def _trim_eos(tokens):
tokens = np.array(tokens, np.int32)
if vocabularies.DECODED_EOS_ID in tokens:
tokens = tokens[:np.argmax(tokens == vocabularies.DECODED_EOS_ID)]
return tokens
inference_model = InferenceModel('/home/user/app/checkpoints/mt3/', 'mt3')
def inference(audio):
with open(audio, 'rb') as fd:
contents = fd.read()
audio = upload_audio(contents,sample_rate=16000)
est_ns = inference_model(audio)
note_seq.sequence_proto_to_midi_file(est_ns, './transcribed.mid')
return './transcribed.mid'
title = "MT3"
description = "Gradio demo for MT3: Multi-Task Multitrack Music Transcription. To use it, simply upload your audio file, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2111.03017' target='_blank'>MT3: Multi-Task Multitrack Music Transcription</a> | <a href='https://github.com/magenta/mt3' target='_blank'>Github Repo</a></p>"
examples=[['download.wav']]
gr.Interface(
inference,
gr.inputs.Audio(type="filepath", label="Input"),
[gr.outputs.File(label="Output")],
title=title,
description=description,
article=article,
examples=examples,
allow_flagging=False,
allow_screenshot=False,
enable_queue=True
).launch() |