Spaces:
Runtime error
Runtime error
Christian Koch
commited on
Commit
•
9ed5930
1
Parent(s):
cc3c391
paraphrase
Browse files- app.py +17 -9
- paraphrase.py +45 -0
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline, PegasusForConditionalGeneration, PegasusTokenizer
|
3 |
from fill_in_summary import FillInSummary
|
|
|
4 |
|
5 |
def paraphrase(text):
|
6 |
return text
|
@@ -16,36 +17,43 @@ if select == "Summarization":
|
|
16 |
# left_column.selectbox('Type', ['Question Generator', 'Paraphrasing'])
|
17 |
#st.selectbox('Model', ['T5', 'GPT Neo-X'])
|
18 |
|
19 |
-
|
20 |
|
21 |
submitted = st.form_submit_button("Generate")
|
22 |
|
23 |
if submitted:
|
24 |
-
st.
|
|
|
|
|
25 |
|
26 |
|
27 |
if select == "Fill in the blank":
|
28 |
with st.form("summarization"):
|
29 |
-
|
30 |
|
31 |
submitted = st.form_submit_button("Generate")
|
32 |
|
33 |
if submitted:
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
|
38 |
|
39 |
if select == "Paraphrasing":
|
40 |
with st.form("paraphrasing"):
|
41 |
-
st.selectbox('Model', ['T5', 'GPT Neo-X'])
|
42 |
|
43 |
-
|
44 |
|
45 |
submitted = st.form_submit_button("Generate")
|
46 |
|
47 |
if submitted:
|
48 |
-
st.
|
|
|
|
|
|
|
49 |
|
50 |
|
51 |
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline, PegasusForConditionalGeneration, PegasusTokenizer
|
3 |
from fill_in_summary import FillInSummary
|
4 |
+
from paraphrase import PegasusParaphraser
|
5 |
|
6 |
def paraphrase(text):
|
7 |
return text
|
|
|
17 |
# left_column.selectbox('Type', ['Question Generator', 'Paraphrasing'])
|
18 |
#st.selectbox('Model', ['T5', 'GPT Neo-X'])
|
19 |
|
20 |
+
text_input = st.text_area("Input Text")
|
21 |
|
22 |
submitted = st.form_submit_button("Generate")
|
23 |
|
24 |
if submitted:
|
25 |
+
with st.spinner('Wait for it...'):
|
26 |
+
result = FillInSummary().summarize(text_input)
|
27 |
+
st.write(text_input)
|
28 |
|
29 |
|
30 |
if select == "Fill in the blank":
|
31 |
with st.form("summarization"):
|
32 |
+
text_input = st.text_area("Input Text")
|
33 |
|
34 |
submitted = st.form_submit_button("Generate")
|
35 |
|
36 |
if submitted:
|
37 |
+
with st.spinner('Wait for it...'):
|
38 |
+
fill = FillInSummary()
|
39 |
+
result = fill.summarize(text_input)
|
40 |
+
result = fill.blank_ne_out(result)
|
41 |
+
st.write(result)
|
42 |
|
43 |
|
44 |
if select == "Paraphrasing":
|
45 |
with st.form("paraphrasing"):
|
46 |
+
# st.selectbox('Model', ['T5', 'GPT Neo-X'])
|
47 |
|
48 |
+
text_input = st.text_area("Input Text")
|
49 |
|
50 |
submitted = st.form_submit_button("Generate")
|
51 |
|
52 |
if submitted:
|
53 |
+
with st.spinner('Wait for it...'):
|
54 |
+
paraphrase_model = PegasusParaphraser()
|
55 |
+
result = paraphrase_model.paraphrase(text_input)
|
56 |
+
st.write(result)
|
57 |
|
58 |
|
59 |
|
paraphrase.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
|
2 |
+
|
3 |
+
class PegasusParaphraser:
|
4 |
+
""" Pegasus Model for Paraphrase"""
|
5 |
+
|
6 |
+
def __init__(self, num_return_sequences=3, num_beams=10, max_length=60,temperature=1.5, device="cpu"):
|
7 |
+
self.model_name = "tuner007/pegasus_paraphrase"
|
8 |
+
self.device = device
|
9 |
+
self.model = self.load_model()
|
10 |
+
self.tokenizer = PegasusTokenizer.from_pretrained(self.model_name)
|
11 |
+
self.num_return_sequences = num_return_sequences
|
12 |
+
self.num_beams = num_beams
|
13 |
+
self.max_length=max_length
|
14 |
+
self.temperature=temperature
|
15 |
+
|
16 |
+
|
17 |
+
def load_model(self):
|
18 |
+
model = PegasusForConditionalGeneration.from_pretrained(self.model_name).to(self.device)
|
19 |
+
return model
|
20 |
+
|
21 |
+
|
22 |
+
def paraphrase(self,input_text ):
|
23 |
+
|
24 |
+
batch = self.tokenizer(
|
25 |
+
[input_text],
|
26 |
+
truncation=True,
|
27 |
+
padding="longest",
|
28 |
+
max_length=self.max_length,
|
29 |
+
return_tensors="pt",
|
30 |
+
).to(self.device)
|
31 |
+
translated = self.model.generate(
|
32 |
+
**batch,
|
33 |
+
max_length=self.max_length,
|
34 |
+
num_beams=self.num_beams,
|
35 |
+
num_return_sequences=self.num_return_sequences,
|
36 |
+
temperature=self.temperature
|
37 |
+
)
|
38 |
+
tgt_text = self.tokenizer.batch_decode(translated, skip_special_tokens=True)
|
39 |
+
return tgt_text
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|