Spaces:
No application file
No application file
Commit
·
bbb2a4d
1
Parent(s):
ebf7352
Usando vLLM com o modelo Qwen
Browse files- intro-vllm.ipynb +123 -0
intro-vllm.ipynb
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# <h1 align=\"center\"><font color=\"red\">Introdução ao uso do vLLM</font></h1>"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "markdown",
|
12 |
+
"metadata": {},
|
13 |
+
"source": [
|
14 |
+
"<font color=\"pink\">Senior Data Scientist.: Dr. Eddy Giusepe Chirinos Isidro</font>"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "markdown",
|
19 |
+
"metadata": {},
|
20 |
+
"source": [
|
21 |
+
"Link de estudo:\n",
|
22 |
+
"\n",
|
23 |
+
"* [vllm-project](https://github.com/vllm-project/vllm?tab=readme-ov-file)\n",
|
24 |
+
"\n",
|
25 |
+
"* [vllm: quickstart](https://docs.vllm.ai/en/latest/getting_started/quickstart.html)"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "markdown",
|
30 |
+
"metadata": {},
|
31 |
+
"source": [
|
32 |
+
"<font color=\"orange\">`vLLM` é uma biblioteca rápida e fácil de usar para inferência e serviço de `LLM`.</font>"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "markdown",
|
37 |
+
"metadata": {},
|
38 |
+
"source": [
|
39 |
+
"![](https://pypi-camo.freetls.fastly.net/78b171d927e29d3adc6067494d26adffc78c8532/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f766c6c6d2d70726f6a6563742f766c6c6d2f6d61696e2f646f63732f736f757263652f6173736574732f6c6f676f732f766c6c6d2d6c6f676f2d746578742d6c696768742e706e67)"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "markdown",
|
44 |
+
"metadata": {},
|
45 |
+
"source": [
|
46 |
+
"<font color=\"orange\">Você deve executar o seguinte comando no terminal (deixa ele rodando como você faz no `ollama`):</font>\n",
|
47 |
+
"\n",
|
48 |
+
"```bash\n",
|
49 |
+
"vllm serve Qwen/Qwen2.5-1.5B-Instruct \n",
|
50 |
+
"```"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": null,
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [],
|
58 |
+
"source": [
|
59 |
+
"from openai import OpenAI\n",
|
60 |
+
"\n",
|
61 |
+
"# Modifique o OpenAI's API key e API base para usar o servidor API do vLLM:\n",
|
62 |
+
"openai_api_key = \"EMPTY\"\n",
|
63 |
+
"openai_api_base = \"http://localhost:8000/v1\"\n",
|
64 |
+
"\n",
|
65 |
+
"client = OpenAI(\n",
|
66 |
+
" api_key=openai_api_key,\n",
|
67 |
+
" base_url=openai_api_base,\n",
|
68 |
+
")\n",
|
69 |
+
"completion = client.completions.create(model=\"Qwen/Qwen2.5-1.5B-Instruct\",\n",
|
70 |
+
" prompt=\"San Francisco é uma\")\n",
|
71 |
+
"\n",
|
72 |
+
"print(\"Completion result:\", completion.choices[0].text)"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": null,
|
78 |
+
"metadata": {},
|
79 |
+
"outputs": [],
|
80 |
+
"source": [
|
81 |
+
"from openai import OpenAI\n",
|
82 |
+
"\n",
|
83 |
+
"# Modifique o OpenAI's API key e API base para usar o servidor API do vLLM:\n",
|
84 |
+
"openai_api_key = \"EMPTY\"\n",
|
85 |
+
"openai_api_base = \"http://localhost:8000/v1\"\n",
|
86 |
+
"\n",
|
87 |
+
"client = OpenAI(\n",
|
88 |
+
" api_key=openai_api_key,\n",
|
89 |
+
" base_url=openai_api_base,\n",
|
90 |
+
")\n",
|
91 |
+
"\n",
|
92 |
+
"chat_response = client.chat.completions.create(model=\"Qwen/Qwen2.5-1.5B-Instruct\",\n",
|
93 |
+
" messages=[{\"role\": \"system\", \"content\": \"Você é um assistente útil.\"},\n",
|
94 |
+
" {\"role\": \"user\", \"content\": \"Conta para mim uma piada.\"},\n",
|
95 |
+
" ]\n",
|
96 |
+
" )\n",
|
97 |
+
"\n",
|
98 |
+
"print(\"Chat response:\", chat_response.choices[0].message.content)\n"
|
99 |
+
]
|
100 |
+
}
|
101 |
+
],
|
102 |
+
"metadata": {
|
103 |
+
"kernelspec": {
|
104 |
+
"display_name": ".venv",
|
105 |
+
"language": "python",
|
106 |
+
"name": "python3"
|
107 |
+
},
|
108 |
+
"language_info": {
|
109 |
+
"codemirror_mode": {
|
110 |
+
"name": "ipython",
|
111 |
+
"version": 3
|
112 |
+
},
|
113 |
+
"file_extension": ".py",
|
114 |
+
"mimetype": "text/x-python",
|
115 |
+
"name": "python",
|
116 |
+
"nbconvert_exporter": "python",
|
117 |
+
"pygments_lexer": "ipython3",
|
118 |
+
"version": "3.12.8"
|
119 |
+
}
|
120 |
+
},
|
121 |
+
"nbformat": 4,
|
122 |
+
"nbformat_minor": 2
|
123 |
+
}
|