Spaces:
Runtime error
Runtime error
File size: 11,526 Bytes
2605d55 aa4f694 2605d55 1d82a0b 2605d55 1d82a0b 2605d55 abd7b16 3e68ccf 57daf6a 3e68ccf 9fcc9ee 2605d55 3e68ccf 2605d55 aa4f694 f845b93 2605d55 f845b93 2605d55 f845b93 2605d55 f845b93 2605d55 f845b93 abd7b16 f845b93 2605d55 f845b93 2605d55 f845b93 2605d55 f845b93 2605d55 f845b93 2605d55 3e68ccf 2605d55 3e68ccf 76508d0 3e68ccf e55d16a 2605d55 e55d16a 2605d55 3e68ccf 6b5a020 2605d55 3e68ccf 2605d55 e55d16a 2605d55 e55d16a 2605d55 3e68ccf 2605d55 3e68ccf 2605d55 3e68ccf 2605d55 3e68ccf 2605d55 e55d16a 2605d55 3e68ccf 2605d55 3e68ccf 2605d55 57daf6a 2605d55 6e4a820 2605d55 abd7b16 2605d55 57daf6a 2605d55 6e4a820 2605d55 abd7b16 2605d55 3e68ccf 2605d55 3e68ccf 2605d55 3e68ccf 2605d55 3e68ccf 1189403 2605d55 3e68ccf 2605d55 e065b20 abd7b16 e065b20 2605d55 3e68ccf 2605d55 c0b5a2b 2605d55 3e68ccf 2605d55 3e68ccf 2605d55 3e68ccf 2605d55 e55d16a 2605d55 3e68ccf 2605d55 e55d16a 33d58d5 2605d55 e55d16a 94d93d2 2605d55 e55d16a 2605d55 33d58d5 c6643c7 2605d55 33d58d5 2605d55 c6643c7 2605d55 3e68ccf ae312d0 3e68ccf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
import datetime
import logging
import pathlib
import random
import tempfile
from typing import List
import json5
import streamlit as st
from langchain_community.chat_message_histories import (
StreamlitChatMessageHistory
)
from langchain_core.messages import HumanMessage
from langchain_core.prompts import ChatPromptTemplate
# from transformers import AutoTokenizer
from global_config import GlobalConfig
from helpers import llm_helper, pptx_helper, text_helper
@st.cache_data
def _load_strings() -> dict:
"""
Load various strings to be displayed in the app.
:return: The dictionary of strings.
"""
with open(GlobalConfig.APP_STRINGS_FILE, 'r', encoding='utf-8') as in_file:
return json5.loads(in_file.read())
@st.cache_data
def _get_prompt_template(is_refinement: bool) -> str:
"""
Return a prompt template.
:param is_refinement: Whether this is the initial or refinement prompt.
:return: The prompt template as f-string.
"""
if is_refinement:
with open(GlobalConfig.REFINEMENT_PROMPT_TEMPLATE, 'r', encoding='utf-8') as in_file:
template = in_file.read()
else:
with open(GlobalConfig.INITIAL_PROMPT_TEMPLATE, 'r', encoding='utf-8') as in_file:
template = in_file.read()
return template
# @st.cache_resource
# def _get_tokenizer() -> AutoTokenizer:
# """
# Get Mistral tokenizer for counting tokens.
#
# :return: The tokenizer.
# """
#
# return AutoTokenizer.from_pretrained(
# pretrained_model_name_or_path=GlobalConfig.HF_LLM_MODEL_NAME
# )
APP_TEXT = _load_strings()
# Session variables
CHAT_MESSAGES = 'chat_messages'
DOWNLOAD_FILE_KEY = 'download_file_name'
IS_IT_REFINEMENT = 'is_it_refinement'
logger = logging.getLogger(__name__)
progress_bar = st.progress(0, text='Setting up SlideDeck AI...')
texts = list(GlobalConfig.PPTX_TEMPLATE_FILES.keys())
captions = [GlobalConfig.PPTX_TEMPLATE_FILES[x]['caption'] for x in texts]
pptx_template = st.sidebar.radio(
'Select a presentation template:',
texts,
captions=captions,
horizontal=True
)
def display_page_header_content():
"""
Display content in the page header.
"""
st.title(APP_TEXT['app_name'])
st.subheader(APP_TEXT['caption'])
st.markdown(
'![Visitors](https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fbarunsaha%2Fslide-deck-ai&countColor=%23263759)' # noqa: E501
)
def display_page_footer_content():
"""
Display content in the page footer.
"""
st.text(APP_TEXT['tos'] + '\n\n' + APP_TEXT['tos2'])
def build_ui():
"""
Display the input elements for content generation.
"""
display_page_header_content()
with st.expander('Usage Policies and Limitations'):
display_page_footer_content()
progress_bar.progress(50, text='Setting up chat interface...')
set_up_chat_ui()
def set_up_chat_ui():
"""
Prepare the chat interface and related functionality.
"""
with st.expander('Usage Instructions'):
st.write(GlobalConfig.CHAT_USAGE_INSTRUCTIONS)
st.markdown(
'SlideDeck AI is powered by'
' [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)'
)
# view_messages = st.expander('View the messages in the session state')
st.chat_message('ai').write(
random.choice(APP_TEXT['ai_greetings'])
)
progress_bar.progress(100, text='Done!')
progress_bar.empty()
history = StreamlitChatMessageHistory(key=CHAT_MESSAGES)
if _is_it_refinement():
template = _get_prompt_template(is_refinement=True)
else:
template = _get_prompt_template(is_refinement=False)
prompt_template = ChatPromptTemplate.from_template(template)
# Since Streamlit app reloads at every interaction, display the chat history
# from the save session state
for msg in history.messages:
msg_type = msg.type
if msg_type == 'user':
st.chat_message(msg_type).write(msg.content)
else:
st.chat_message(msg_type).code(msg.content, language='json')
if prompt := st.chat_input(
placeholder=APP_TEXT['chat_placeholder'],
max_chars=GlobalConfig.LLM_MODEL_MAX_INPUT_LENGTH
):
progress_bar_pptx = st.progress(0, 'Preparing to run...')
if not text_helper.is_valid_prompt(prompt):
st.error(
'Not enough information provided!'
' Please be a little more descriptive and type a few words'
' with a few characters :)'
)
return
logger.info('User input: %s | #characters: %d', prompt, len(prompt))
st.chat_message('user').write(prompt)
user_messages = _get_user_messages()
user_messages.append(prompt)
list_of_msgs = [
f'{idx + 1}. {msg}' for idx, msg in enumerate(user_messages)
]
list_of_msgs = '\n'.join(list_of_msgs)
if _is_it_refinement():
formatted_template = prompt_template.format(
**{
'instructions': list_of_msgs,
'previous_content': _get_last_response()
}
)
else:
formatted_template = prompt_template.format(
**{
'question': prompt,
}
)
progress_bar_pptx.progress(5, 'Calling LLM...will retry if connection times out...')
response: dict = llm_helper.hf_api_query({
'inputs': formatted_template,
'parameters': {
'temperature': GlobalConfig.LLM_MODEL_TEMPERATURE,
'min_length': GlobalConfig.LLM_MODEL_MIN_OUTPUT_LENGTH,
'max_length': GlobalConfig.LLM_MODEL_MAX_OUTPUT_LENGTH,
'max_new_tokens': GlobalConfig.LLM_MODEL_MAX_OUTPUT_LENGTH,
'num_return_sequences': 1,
'return_full_text': False,
# "repetition_penalty": 0.0001
},
'options': {
'wait_for_model': True,
'use_cache': True
}
})
if len(response) > 0 and 'generated_text' in response[0]:
response: str = response[0]['generated_text'].strip()
st.chat_message('ai').code(response, language='json')
history.add_user_message(prompt)
history.add_ai_message(response)
# if GlobalConfig.COUNT_TOKENS:
# tokenizer = _get_tokenizer()
# tokens_count_in = len(tokenizer.tokenize(formatted_template))
# tokens_count_out = len(tokenizer.tokenize(response))
# logger.debug(
# 'Tokens count:: input: %d, output: %d',
# tokens_count_in, tokens_count_out
# )
# _display_messages_history(view_messages)
# The content has been generated as JSON
# There maybe trailing ``` at the end of the response -- remove them
# To be careful: ``` may be part of the content as well when code is generated
progress_bar_pptx.progress(50, 'Analyzing response...')
response_cleaned = text_helper.get_clean_json(response)
logger.info(
'Cleaned JSON response:: original length: %d | cleaned length: %d',
len(response), len(response_cleaned)
)
logger.debug('Cleaned JSON: %s', response_cleaned)
# Now create the PPT file
progress_bar_pptx.progress(75, 'Creating the slide deck...give it a moment...')
generate_slide_deck(response_cleaned)
progress_bar_pptx.progress(100, text='Done!')
logger.info(
'#messages in history / 2: %d',
len(st.session_state[CHAT_MESSAGES]) / 2
)
def generate_slide_deck(json_str: str):
"""
Create a slide deck.
:param json_str: The content in *valid* JSON format.
"""
if DOWNLOAD_FILE_KEY in st.session_state:
path = pathlib.Path(st.session_state[DOWNLOAD_FILE_KEY])
else:
temp = tempfile.NamedTemporaryFile(delete=False, suffix='.pptx')
path = pathlib.Path(temp.name)
st.session_state[DOWNLOAD_FILE_KEY] = str(path)
if temp:
temp.close()
logger.debug('Creating PPTX file: %s...', st.session_state[DOWNLOAD_FILE_KEY])
try:
pptx_helper.generate_powerpoint_presentation(
json_str,
slides_template=pptx_template,
output_file_path=path
)
_display_download_button(path)
except ValueError:
# st.error(
# f"{APP_TEXT['json_parsing_error']}"
# f"\n\nAdditional error info: {ve}"
# f"\n\nHere are some sample instructions that you could try to possibly fix this error;"
# f" if these don't work, try rephrasing or refreshing:"
# f"\n\n"
# "- Regenerate content and fix the JSON error."
# "\n- Regenerate content and fix the JSON error. Quotes inside quotes should be escaped."
# )
# logger.error('%s', APP_TEXT['json_parsing_error'])
# logger.error('Additional error info: %s', str(ve))
st.info(
'Encountered error while parsing JSON...will fix it and retry'
)
logger.debug(
'Caught ValueError: trying again after repairing JSON...'
)
pptx_helper.generate_powerpoint_presentation(
text_helper.fix_malformed_json(json_str),
slides_template=pptx_template,
output_file_path=path
)
_display_download_button(path)
except Exception as ex:
st.error(APP_TEXT['content_generation_error'])
logger.error('Caught a generic exception: %s', str(ex))
def _is_it_refinement() -> bool:
"""
Whether it is the initial prompt or a refinement.
:return: True if it is the initial prompt; False otherwise.
"""
if IS_IT_REFINEMENT in st.session_state:
return True
if len(st.session_state[CHAT_MESSAGES]) >= 2:
# Prepare for the next call
st.session_state[IS_IT_REFINEMENT] = True
return True
return False
def _get_user_messages() -> List[str]:
"""
Get a list of user messages submitted until now from the session state.
:return: The list of user messages.
"""
return [
msg.content for msg in st.session_state[CHAT_MESSAGES] if isinstance(msg, HumanMessage)
]
def _get_last_response() -> str:
"""
Get the last response generated by AI.
:return: The response text.
"""
return st.session_state[CHAT_MESSAGES][-1].content
def _display_messages_history(view_messages: st.expander):
"""
Display the history of messages.
:param view_messages: The list of AI and Human messages.
"""
with view_messages:
view_messages.json(st.session_state[CHAT_MESSAGES])
def _display_download_button(file_path: pathlib.Path):
"""
Display a download button to download a slide deck.
:param file_path: The path of the .pptx file.
"""
with open(file_path, 'rb') as download_file:
st.download_button(
'Download PPTX file ⬇️',
data=download_file,
file_name='Presentation.pptx',
key=datetime.datetime.now()
)
def main():
"""
Trigger application run.
"""
build_ui()
if __name__ == '__main__':
main()
|