File size: 7,637 Bytes
0ab2a52
 
 
 
f50f82b
0ab2a52
1a96163
f50f82b
 
0ab2a52
 
 
 
 
 
f0a69f2
0ab2a52
 
 
 
f0a69f2
0ab2a52
 
 
 
 
1a96163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ab2a52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
942b580
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import gradio as gr
import librosa
import numpy as np
import torch

import string
import httpx
import inflect
import re

from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan


checkpoint = "microsoft/speecht5_tts"
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForTextToSpeech.from_pretrained("Edmon02/speecht5_finetuned_voxpopuli_hy")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")


speaker_embeddings = {
    "BDL": "cmu_us_bdl_arctic-wav-arctic_a0009.npy",
}

def convert_number_to_words(number: float) -> str:
    p = inflect.engine()
    words = p.number_to_words(number)

    # Translate using httpx
    async def translate_text(text, source_lang, target_lang):
        async with httpx.AsyncClient() as client:
            response = await client.get(
                f'https://api.mymemory.translated.net/get?q={text}&langpair={source_lang}|{target_lang}'
            )
            translation = response.json()
            return translation['responseData']['translatedText']

    # You can change 'en' to the appropriate source language code
    source_lang = 'en'
    # You can change 'hy' to the appropriate target language code
    target_lang = 'hy'

    # Perform translation asynchronously
    translated_words = httpx.run(translate_text, words, source_lang, target_lang)

    return translated_words

def process_text(text: str) -> str:
    # Convert numbers to words
    words = []
    text = str(text) if str(text) else ''
    for word in text.split():
        # Check if the word is a number
        if re.search(r'\d', word):
            words.append(convert_number_to_words(int(''.join(filter(str.isdigit, word)))))
        else:
            words.append(word)

    # Join the words back into a sentence
    processed_text = ' '.join(words)
    return processed_text

replacements = [
    ("՚", "?"),
    ('՛', ""),
    ('՝', ""),
    ("«", "\""),
    ("»", "\""),
    ("՞", "?"),
    ("ա", "a"),
    ("բ", "b"),
    ("գ", "g"),
    ("դ", "d"),
    ("զ",	"z"),
    ("է", "e"),
    ("ը", "e'"),
    ("թ", "t'"),
    ("ժ",	"jh"),
    ("ի",	"i"),
    ("լ",	"l"),
    ("խ",	"kh"),
    ("ծ",	"ts"),
    ("կ",	"k"),
    ("հ",	"h"),
    ("ձ",	"dz"),
    ("ղ",	"gh"),
    ("ճ",	"ch"),
    ("մ",	"m"),
    ("յ",	"y"),
    ("ն",	"n"),
    ("շ",	"sh"),
    ("չ",	"ch'"),
    ("պ",	"p"),
    ("ջ",	"j"),
    ("ռ",	"r"),
    ("ս",	"s"),
    ("վ",	"v"),
    ("տ",	"t"),
    ("ր",	"r"),
    ("ց",	"ts'"),
    ("ւ",	""),
    ("փ",	"p'"),
    ("ք",	"k'"),
    ("և",	"yev"),
    ("օ",	"o"),
    ("ֆ",	"f"),
    ('։', "."),
    ('–', "-"),
    ('†', "e'"),
]


def cleanup_text(text):
    
    translator = str.maketrans("", "", string.punctuation)

    text = text.translate(translator).lower()
    text = text.lower()
    
    normalized_text = text

    normalized_text = normalized_text.replace("ու", "u")
    normalized_text = normalized_text.replace("եւ", "u")
    normalized_text = normalized_text.replace("եվ", "u")

    # Handle 'ո' at the beginning of a word
    normalized_text = normalized_text.replace(" ո", " vo")

    # Handle 'ո' in the middle of a word
    normalized_text = normalized_text.replace("ո", "o")

    # Handle 'ե' at the beginning of a word
    normalized_text = normalized_text.replace(" ե", " ye")

    # Handle 'ե' in the middle of a word
    normalized_text = normalized_text.replace("ե", "e")

    # Apply other replacements
    for src, dst in replacements:
        normalized_text = normalized_text.replace(src, dst)

    inputs = normalized_text
    return inputs

def predict(text, speaker):
    if len(text.strip()) == 0:
        return (16000, np.zeros(0).astype(np.int16))

    text = process_text(text)
    
    text = cleanup_text({'normalized_text': text})['normalized_text']

    inputs = processor(text=text, return_tensors="pt")

    # limit input length
    input_ids = inputs["input_ids"]
    input_ids = input_ids[..., :model.config.max_text_positions]

    speaker_embedding = np.load(speaker_embeddings[speaker[:3]])

    speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)

    speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)

    speech = (speech.numpy() * 32767).astype(np.int16)
    return (16000, speech)


title = "SpeechT5: Speech Synthesis"

description = """
The <b>SpeechT5</b> model is pre-trained on text as well as speech inputs, with targets that are also a mix of text and speech.
By pre-training on text and speech at the same time, it learns unified representations for both, resulting in improved modeling capabilities.

SpeechT5 can be fine-tuned for different speech tasks. This space demonstrates the <b>text-to-speech</b> (TTS) checkpoint for the English language.

See also the <a href="https://huggingface.co/spaces/Matthijs/speecht5-asr-demo">speech recognition (ASR) demo</a>
and the <a href="https://huggingface.co/spaces/Matthijs/speecht5-vc-demo">voice conversion demo</a>.

Refer to <a href="https://colab.research.google.com/drive/1i7I5pzBcU3WDFarDnzweIj4-sVVoIUFJ">this Colab notebook</a> to learn how to fine-tune the SpeechT5 TTS model on your own dataset or language.

<b>How to use:</b> Enter some English text and choose a speaker. The output is a mel spectrogram, which is converted to a mono 16 kHz waveform by the
HiFi-GAN vocoder. Because the model always applies random dropout, each attempt will give slightly different results.
The <em>Surprise Me!</em> option creates a completely randomized speaker.
"""

article = """
<div style='margin:20px auto;'>

<p>References: <a href="https://arxiv.org/abs/2110.07205">SpeechT5 paper</a> |
<a href="https://github.com/microsoft/SpeechT5/">original GitHub</a> |
<a href="https://huggingface.co/mechanicalsea/speecht5-tts">original weights</a></p>

<pre>
@article{Ao2021SpeechT5,
  title   = {SpeechT5: Unified-Modal Encoder-Decoder Pre-training for Spoken Language Processing},
  author  = {Junyi Ao and Rui Wang and Long Zhou and Chengyi Wang and Shuo Ren and Yu Wu and Shujie Liu and Tom Ko and Qing Li and Yu Zhang and Zhihua Wei and Yao Qian and Jinyu Li and Furu Wei},
  eprint={2110.07205},
  archivePrefix={arXiv},
  primaryClass={eess.AS},
  year={2021}
}
</pre>

<p>Speaker embeddings were generated from <a href="http://www.festvox.org/cmu_arctic/">CMU ARCTIC</a> using <a href="https://huggingface.co/mechanicalsea/speecht5-vc/blob/main/manifest/utils/prep_cmu_arctic_spkemb.py">this script</a>.</p>

</div>
"""

examples = [
    ["It is not in the stars to hold our destiny but in ourselves.", "BDL (male)"],
    ["The octopus and Oliver went to the opera in October.", "CLB (female)"],
    ["She sells seashells by the seashore. I saw a kitten eating chicken in the kitchen.", "RMS (male)"],
    ["Brisk brave brigadiers brandished broad bright blades, blunderbusses, and bludgeons—balancing them badly.", "SLT (female)"],
    ["A synonym for cinnamon is a cinnamon synonym.", "BDL (male)"],
    ["How much wood would a woodchuck chuck if a woodchuck could chuck wood? He would chuck, he would, as much as he could, and chuck as much wood as a woodchuck would if a woodchuck could chuck wood.", "CLB (female)"],
]

gr.Interface(
    fn=predict,
    inputs=[
        gr.Text(label="Input Text"),
        gr.Radio(label="Speaker", choices=[
            "BDL (male)"
        ],
        value="BDL (male)"),
    ],
    outputs=[
        gr.Audio(label="Generated Speech", type="numpy"),
    ],
    title=title,
    description=description,
    article=article,
    examples=examples,
).launch()