Spaces:
Running
Running
File size: 7,637 Bytes
0ab2a52 f50f82b 0ab2a52 1a96163 f50f82b 0ab2a52 f0a69f2 0ab2a52 f0a69f2 0ab2a52 1a96163 0ab2a52 942b580 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import gradio as gr
import librosa
import numpy as np
import torch
import string
import httpx
import inflect
import re
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
checkpoint = "microsoft/speecht5_tts"
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForTextToSpeech.from_pretrained("Edmon02/speecht5_finetuned_voxpopuli_hy")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
speaker_embeddings = {
"BDL": "cmu_us_bdl_arctic-wav-arctic_a0009.npy",
}
def convert_number_to_words(number: float) -> str:
p = inflect.engine()
words = p.number_to_words(number)
# Translate using httpx
async def translate_text(text, source_lang, target_lang):
async with httpx.AsyncClient() as client:
response = await client.get(
f'https://api.mymemory.translated.net/get?q={text}&langpair={source_lang}|{target_lang}'
)
translation = response.json()
return translation['responseData']['translatedText']
# You can change 'en' to the appropriate source language code
source_lang = 'en'
# You can change 'hy' to the appropriate target language code
target_lang = 'hy'
# Perform translation asynchronously
translated_words = httpx.run(translate_text, words, source_lang, target_lang)
return translated_words
def process_text(text: str) -> str:
# Convert numbers to words
words = []
text = str(text) if str(text) else ''
for word in text.split():
# Check if the word is a number
if re.search(r'\d', word):
words.append(convert_number_to_words(int(''.join(filter(str.isdigit, word)))))
else:
words.append(word)
# Join the words back into a sentence
processed_text = ' '.join(words)
return processed_text
replacements = [
("՚", "?"),
('՛', ""),
('՝', ""),
("«", "\""),
("»", "\""),
("՞", "?"),
("ա", "a"),
("բ", "b"),
("գ", "g"),
("դ", "d"),
("զ", "z"),
("է", "e"),
("ը", "e'"),
("թ", "t'"),
("ժ", "jh"),
("ի", "i"),
("լ", "l"),
("խ", "kh"),
("ծ", "ts"),
("կ", "k"),
("հ", "h"),
("ձ", "dz"),
("ղ", "gh"),
("ճ", "ch"),
("մ", "m"),
("յ", "y"),
("ն", "n"),
("շ", "sh"),
("չ", "ch'"),
("պ", "p"),
("ջ", "j"),
("ռ", "r"),
("ս", "s"),
("վ", "v"),
("տ", "t"),
("ր", "r"),
("ց", "ts'"),
("ւ", ""),
("փ", "p'"),
("ք", "k'"),
("և", "yev"),
("օ", "o"),
("ֆ", "f"),
('։', "."),
('–', "-"),
('†', "e'"),
]
def cleanup_text(text):
translator = str.maketrans("", "", string.punctuation)
text = text.translate(translator).lower()
text = text.lower()
normalized_text = text
normalized_text = normalized_text.replace("ու", "u")
normalized_text = normalized_text.replace("եւ", "u")
normalized_text = normalized_text.replace("եվ", "u")
# Handle 'ո' at the beginning of a word
normalized_text = normalized_text.replace(" ո", " vo")
# Handle 'ո' in the middle of a word
normalized_text = normalized_text.replace("ո", "o")
# Handle 'ե' at the beginning of a word
normalized_text = normalized_text.replace(" ե", " ye")
# Handle 'ե' in the middle of a word
normalized_text = normalized_text.replace("ե", "e")
# Apply other replacements
for src, dst in replacements:
normalized_text = normalized_text.replace(src, dst)
inputs = normalized_text
return inputs
def predict(text, speaker):
if len(text.strip()) == 0:
return (16000, np.zeros(0).astype(np.int16))
text = process_text(text)
text = cleanup_text({'normalized_text': text})['normalized_text']
inputs = processor(text=text, return_tensors="pt")
# limit input length
input_ids = inputs["input_ids"]
input_ids = input_ids[..., :model.config.max_text_positions]
speaker_embedding = np.load(speaker_embeddings[speaker[:3]])
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)
speech = (speech.numpy() * 32767).astype(np.int16)
return (16000, speech)
title = "SpeechT5: Speech Synthesis"
description = """
The <b>SpeechT5</b> model is pre-trained on text as well as speech inputs, with targets that are also a mix of text and speech.
By pre-training on text and speech at the same time, it learns unified representations for both, resulting in improved modeling capabilities.
SpeechT5 can be fine-tuned for different speech tasks. This space demonstrates the <b>text-to-speech</b> (TTS) checkpoint for the English language.
See also the <a href="https://huggingface.co/spaces/Matthijs/speecht5-asr-demo">speech recognition (ASR) demo</a>
and the <a href="https://huggingface.co/spaces/Matthijs/speecht5-vc-demo">voice conversion demo</a>.
Refer to <a href="https://colab.research.google.com/drive/1i7I5pzBcU3WDFarDnzweIj4-sVVoIUFJ">this Colab notebook</a> to learn how to fine-tune the SpeechT5 TTS model on your own dataset or language.
<b>How to use:</b> Enter some English text and choose a speaker. The output is a mel spectrogram, which is converted to a mono 16 kHz waveform by the
HiFi-GAN vocoder. Because the model always applies random dropout, each attempt will give slightly different results.
The <em>Surprise Me!</em> option creates a completely randomized speaker.
"""
article = """
<div style='margin:20px auto;'>
<p>References: <a href="https://arxiv.org/abs/2110.07205">SpeechT5 paper</a> |
<a href="https://github.com/microsoft/SpeechT5/">original GitHub</a> |
<a href="https://huggingface.co/mechanicalsea/speecht5-tts">original weights</a></p>
<pre>
@article{Ao2021SpeechT5,
title = {SpeechT5: Unified-Modal Encoder-Decoder Pre-training for Spoken Language Processing},
author = {Junyi Ao and Rui Wang and Long Zhou and Chengyi Wang and Shuo Ren and Yu Wu and Shujie Liu and Tom Ko and Qing Li and Yu Zhang and Zhihua Wei and Yao Qian and Jinyu Li and Furu Wei},
eprint={2110.07205},
archivePrefix={arXiv},
primaryClass={eess.AS},
year={2021}
}
</pre>
<p>Speaker embeddings were generated from <a href="http://www.festvox.org/cmu_arctic/">CMU ARCTIC</a> using <a href="https://huggingface.co/mechanicalsea/speecht5-vc/blob/main/manifest/utils/prep_cmu_arctic_spkemb.py">this script</a>.</p>
</div>
"""
examples = [
["It is not in the stars to hold our destiny but in ourselves.", "BDL (male)"],
["The octopus and Oliver went to the opera in October.", "CLB (female)"],
["She sells seashells by the seashore. I saw a kitten eating chicken in the kitchen.", "RMS (male)"],
["Brisk brave brigadiers brandished broad bright blades, blunderbusses, and bludgeons—balancing them badly.", "SLT (female)"],
["A synonym for cinnamon is a cinnamon synonym.", "BDL (male)"],
["How much wood would a woodchuck chuck if a woodchuck could chuck wood? He would chuck, he would, as much as he could, and chuck as much wood as a woodchuck would if a woodchuck could chuck wood.", "CLB (female)"],
]
gr.Interface(
fn=predict,
inputs=[
gr.Text(label="Input Text"),
gr.Radio(label="Speaker", choices=[
"BDL (male)"
],
value="BDL (male)"),
],
outputs=[
gr.Audio(label="Generated Speech", type="numpy"),
],
title=title,
description=description,
article=article,
examples=examples,
).launch() |