Spaces:
Running
Running
import gradio as gr | |
import librosa | |
import numpy as np | |
import torch | |
import string | |
import httpx | |
import inflect | |
import re | |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
import requests | |
from requests.exceptions import Timeout | |
checkpoint = "Edmon02/TTS_NB_2" | |
processor = SpeechT5Processor.from_pretrained(checkpoint) | |
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint) | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
speaker_embeddings = { | |
"BDL": "nb_620.npy", | |
} | |
def translate_text(text): | |
trans_text = '' | |
# Add a timeout of 5 seconds (adjust as needed) | |
response = requests.get( | |
"https://translate.googleapis.com/translate_a/single", | |
params={ | |
'client': 'gtx', | |
'sl': 'auto', | |
'tl': 'hy', | |
'dt': 't', | |
'q': text, | |
}, | |
timeout=50, | |
) | |
response.raise_for_status() # Raise an HTTPError for bad responses | |
# Extract the translated text from the response | |
translation = response.json()[0][0][0] | |
trans_text += translation | |
return trans_text | |
def convert_number_to_words(number: float) -> str: | |
p = inflect.engine() | |
words = p.number_to_words(number) | |
# Use asyncio.run even if an event loop is already running (nested asyncio) | |
translated_words = translate_text(words) | |
return translated_words | |
def process_text(text: str) -> str: | |
# Convert numbers to words | |
words = [] | |
text = str(text) if str(text) else '' | |
for word in text.split(): | |
# Check if the word is a number | |
if re.search(r'\d', word): | |
words.append(convert_number_to_words(int(''.join(filter(str.isdigit, word))))) | |
else: | |
words.append(word) | |
# Join the words back into a sentence | |
processed_text = ' '.join(words) | |
return processed_text | |
def predict(text, speaker): | |
if len(text.strip()) == 0: | |
return (16000, np.zeros(0).astype(np.int16)) | |
text = process_text(text) | |
inputs = processor(text=text, return_tensors="pt") | |
# limit input length | |
input_ids = inputs["input_ids"] | |
input_ids = input_ids[..., :model.config.max_text_positions] | |
speaker_embedding = np.load(speaker_embeddings[speaker[:3]]).astype(np.float32) | |
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0) | |
speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder) | |
speech = (speech.numpy() * 32767).astype(np.int16) | |
return (16000, speech) | |
title = "SpeechT5_hy: Speech Synthesis" | |
description = """ | |
The <b>SpeechT5</b> model is pre-trained on text as well as speech inputs, with targets that are also a mix of text and speech. | |
By pre-training on text and speech at the same time, it learns unified representations for both, resulting in improved modeling capabilities. | |
SpeechT5 can be fine-tuned for different speech tasks. This space demonstrates the <b>text-to-speech</b> (TTS) checkpoint for the Armenian language. | |
See also the <a href="https://huggingface.co/spaces/Matthijs/speecht5-asr-demo">speech recognition (ASR) demo</a> | |
and the <a href="https://huggingface.co/spaces/Matthijs/speecht5-vc-demo">voice conversion demo</a>. | |
Refer to <a href="https://colab.research.google.com/drive/1i7I5pzBcU3WDFarDnzweIj4-sVVoIUFJ">this Colab notebook</a> to learn how to fine-tune the SpeechT5 TTS model on your own dataset or language. | |
<b>How to use:</b> Enter some Armenian text and choose a speaker. The output is a mel spectrogram, which is converted to a mono 16 kHz waveform by the | |
HiFi-GAN vocoder. Because the model always applies random dropout, each attempt will give slightly different results. | |
The <em>Surprise Me!</em> option creates a completely randomized speaker. | |
""" | |
examples = [ | |
["Մեր ճակատագիրը աստղերի մեջ չէ, այլ մեր մեջ:", "BDL (male)"], | |
["Հոկտեմբերին ութոտնուկն ու Օլիվերը գնացին օպերա։", "BDL (male)"], | |
["Նա ծովի ափին ծովախեցգետիններ է վաճառում: Ես տեսա, որ խոհանոցում հավ է ուտում մի ձագ:", "BDL (male)"], | |
["Կտրուկ խիզախ բրիգադները թափահարում էին լայն, պայծառ շեղբեր, կոպիտ ավտոբուսներ և մռութներ՝ վատ հավասարակշռելով դրանք:", "BDL (male)"], | |
["Դարչինի հոմանիշը դարչինի հոմանիշն է:", "BDL (male)"], | |
["Ինչքա՞ն փայտ կթափի փայտափայտը, եթե փայտափայտը կարողանար փայտ ծակել: Նա կխփեր, կաներ, այնքան, որքան կարող էր, և այնքան փայտ կխփեր, որքան փայտափայտը, եթե փայտափայտը կարողանար փայտ ծակել:", "BDL (male)"], | |
] | |
gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Text(label="Input Text"), | |
gr.Radio(label="Speaker", choices=[ | |
"BDL (male)" | |
], | |
value="BDL (male)"), | |
], | |
outputs=[ | |
gr.Audio(label="Generated Speech", type="numpy"), | |
], | |
title=title, | |
description=description, | |
).launch(share=True) | |