Spaces:
Running
Running
import torch | |
import gradio as gr | |
from transformers import AutoModel | |
import utils | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = AutoModel.from_pretrained('facebook/dinov2-base') | |
model.to(device); | |
def app_fn( | |
source_video: str, | |
batch_size: int, | |
threshold: float, | |
n_patches: int, | |
is_larger: bool, | |
interpolate: bool, | |
) -> str: | |
frames = utils.load_video_frames(source_video) | |
processed_frames = utils.process_video( | |
model=model, | |
video=frames, | |
batch_size=batch_size, | |
threshold=threshold, | |
n_patches=n_patches, | |
is_larger=is_larger, | |
interpolate=interpolate, | |
device=device | |
) | |
output_video = utils.create_video_from_frames_rgb(processed_frames) | |
return output_video | |
if __name__ == "__main__": | |
title = "π¦ DINOv2 Video π¦" | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
source_video = gr.Video(label="Input Video", sources="upload", format="mp4") | |
output_video = gr.Video(label="Output Video") | |
with gr.Row(): | |
batch_size = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Batch Size") | |
threshold = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label="Threshold") | |
n_patches = gr.Slider(minimum=20, maximum=40, step=1, value=30, label="Number of Patches") | |
is_larger = gr.Checkbox(label="Is Larger", value=True) | |
interpolate = gr.Checkbox(label="Interpolate", value=False) | |
btn = gr.Button("Process Video") | |
btn.click( | |
fn=app_fn, | |
inputs=[source_video, batch_size, threshold, n_patches, is_larger, interpolate], | |
outputs=[output_video] | |
) | |
examples = gr.Examples( | |
examples=[ | |
["assets/dog-running.mp4", 30, 0.5, 40, True, False], | |
], | |
inputs=[source_video, batch_size, threshold, n_patches, is_larger, interpolate], | |
outputs=[output_video], | |
fn=app_fn, | |
cache_examples=True | |
) | |
demo.queue(max_size=5).launc() | |