Spaces:
Runtime error
Runtime error
File size: 22,662 Bytes
5c718d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
import os
import random
from os.path import join
import numpy as np
import torch.multiprocessing
from PIL import Image
from scipy.io import loadmat
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torchvision.datasets.cityscapes import Cityscapes
from torchvision.transforms.functional import to_pil_image
from tqdm import tqdm
def bit_get(val, idx):
"""Gets the bit value.
Args:
val: Input value, int or numpy int array.
idx: Which bit of the input val.
Returns:
The "idx"-th bit of input val.
"""
return (val >> idx) & 1
def create_pascal_label_colormap():
"""Creates a label colormap used in PASCAL VOC segmentation benchmark.
Returns:
A colormap for visualizing segmentation results.
"""
colormap = np.zeros((512, 3), dtype=int)
ind = np.arange(512, dtype=int)
for shift in reversed(list(range(8))):
for channel in range(3):
colormap[:, channel] |= bit_get(ind, channel) << shift
ind >>= 3
return colormap
def create_cityscapes_colormap():
colors = [(128, 64, 128),
(244, 35, 232),
(250, 170, 160),
(230, 150, 140),
(70, 70, 70),
(102, 102, 156),
(190, 153, 153),
(180, 165, 180),
(150, 100, 100),
(150, 120, 90),
(153, 153, 153),
(153, 153, 153),
(250, 170, 30),
(220, 220, 0),
(107, 142, 35),
(152, 251, 152),
(70, 130, 180),
(220, 20, 60),
(255, 0, 0),
(0, 0, 142),
(0, 0, 70),
(0, 60, 100),
(0, 0, 90),
(0, 0, 110),
(0, 80, 100),
(0, 0, 230),
(119, 11, 32),
(0, 0, 0)]
return np.array(colors)
class DirectoryDataset(Dataset):
def __init__(self, root, path, image_set, transform, target_transform):
super(DirectoryDataset, self).__init__()
self.split = image_set
self.dir = join(root, path)
self.img_dir = join(self.dir, "imgs", self.split)
self.label_dir = join(self.dir, "labels", self.split)
self.transform = transform
self.target_transform = target_transform
self.img_files = np.array(sorted(os.listdir(self.img_dir)))
assert len(self.img_files) > 0
if os.path.exists(join(self.dir, "labels")):
self.label_files = np.array(sorted(os.listdir(self.label_dir)))
assert len(self.img_files) == len(self.label_files)
else:
self.label_files = None
self.fine_to_coarse = {0: 0,
1: 1,
2: 2,
3: 3,
4: 4,
5: 5,
6: 6,
7: -1,
}
def __getitem__(self, index):
image_fn = self.img_files[index]
img = Image.open(join(self.img_dir, image_fn))
if self.label_files is not None:
label_fn = self.label_files[index]
label = Image.open(join(self.label_dir, label_fn))
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
img = self.transform(img)
if self.label_files is not None:
random.seed(seed)
torch.manual_seed(seed)
label = self.target_transform(label)
new_label_map = torch.zeros_like(label)
for fine, coarse in self.fine_to_coarse.items():
new_label_map[label == fine] = coarse
label = new_label_map
else:
label = torch.zeros(img.shape[1], img.shape[2], dtype=torch.int64) - 1
mask = (label > 0).to(torch.float32)
return img, label, mask
def __len__(self):
return len(self.img_files)
class Potsdam(Dataset):
def __init__(self, root, image_set, transform, target_transform, coarse_labels):
super(Potsdam, self).__init__()
self.split = image_set
self.root = os.path.join(root, "potsdam")
self.transform = transform
self.target_transform = target_transform
split_files = {
"train": ["labelled_train.txt"],
"unlabelled_train": ["unlabelled_train.txt"],
# "train": ["unlabelled_train.txt"],
"val": ["labelled_test.txt"],
"train+val": ["labelled_train.txt", "labelled_test.txt"],
"all": ["all.txt"]
}
assert self.split in split_files.keys()
self.files = []
for split_file in split_files[self.split]:
with open(join(self.root, split_file), "r") as f:
self.files.extend(fn.rstrip() for fn in f.readlines())
self.coarse_labels = coarse_labels
self.fine_to_coarse = {0: 0, 4: 0, # roads and cars
1: 1, 5: 1, # buildings and clutter
2: 2, 3: 2, # vegetation and trees
255: -1
}
def __getitem__(self, index):
image_id = self.files[index]
img = loadmat(join(self.root, "imgs", image_id + ".mat"))["img"]
img = to_pil_image(torch.from_numpy(img).permute(2, 0, 1)[:3]) # TODO add ir channel back
try:
label = loadmat(join(self.root, "gt", image_id + ".mat"))["gt"]
label = to_pil_image(torch.from_numpy(label).unsqueeze(-1).permute(2, 0, 1))
except FileNotFoundError:
label = to_pil_image(torch.ones(1, img.height, img.width))
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
img = self.transform(img)
random.seed(seed)
torch.manual_seed(seed)
label = self.target_transform(label).squeeze(0)
if self.coarse_labels:
new_label_map = torch.zeros_like(label)
for fine, coarse in self.fine_to_coarse.items():
new_label_map[label == fine] = coarse
label = new_label_map
mask = (label > 0).to(torch.float32)
return img, label, mask
def __len__(self):
return len(self.files)
class PotsdamRaw(Dataset):
def __init__(self, root, image_set, transform, target_transform, coarse_labels):
super(PotsdamRaw, self).__init__()
self.split = image_set
self.root = os.path.join(root, "potsdamraw", "processed")
self.transform = transform
self.target_transform = target_transform
self.files = []
for im_num in range(38):
for i_h in range(15):
for i_w in range(15):
self.files.append("{}_{}_{}.mat".format(im_num, i_h, i_w))
self.coarse_labels = coarse_labels
self.fine_to_coarse = {0: 0, 4: 0, # roads and cars
1: 1, 5: 1, # buildings and clutter
2: 2, 3: 2, # vegetation and trees
255: -1
}
def __getitem__(self, index):
image_id = self.files[index]
img = loadmat(join(self.root, "imgs", image_id))["img"]
img = to_pil_image(torch.from_numpy(img).permute(2, 0, 1)[:3]) # TODO add ir channel back
try:
label = loadmat(join(self.root, "gt", image_id))["gt"]
label = to_pil_image(torch.from_numpy(label).unsqueeze(-1).permute(2, 0, 1))
except FileNotFoundError:
label = to_pil_image(torch.ones(1, img.height, img.width))
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
img = self.transform(img)
random.seed(seed)
torch.manual_seed(seed)
label = self.target_transform(label).squeeze(0)
if self.coarse_labels:
new_label_map = torch.zeros_like(label)
for fine, coarse in self.fine_to_coarse.items():
new_label_map[label == fine] = coarse
label = new_label_map
mask = (label > 0).to(torch.float32)
return img, label, mask
def __len__(self):
return len(self.files)
class Coco(Dataset):
def __init__(self, root, image_set, transform, target_transform,
coarse_labels, exclude_things, subset=None):
super(Coco, self).__init__()
self.split = image_set
self.root = join(root, "cocostuff")
self.coarse_labels = coarse_labels
self.transform = transform
self.label_transform = target_transform
self.subset = subset
self.exclude_things = exclude_things
if self.subset is None:
self.image_list = "Coco164kFull_Stuff_Coarse.txt"
elif self.subset == 6: # IIC Coarse
self.image_list = "Coco164kFew_Stuff_6.txt"
elif self.subset == 7: # IIC Fine
self.image_list = "Coco164kFull_Stuff_Coarse_7.txt"
assert self.split in ["train", "val", "train+val"]
split_dirs = {
"train": ["train2017"],
"val": ["val2017"],
"train+val": ["train2017", "val2017"]
}
self.image_files = []
self.label_files = []
for split_dir in split_dirs[self.split]:
with open(join(self.root, "curated", split_dir, self.image_list), "r") as f:
img_ids = [fn.rstrip() for fn in f.readlines()]
for img_id in img_ids:
self.image_files.append(join(self.root, "images", split_dir, img_id + ".jpg"))
self.label_files.append(join(self.root, "annotations", split_dir, img_id + ".png"))
self.fine_to_coarse = {0: 9, 1: 11, 2: 11, 3: 11, 4: 11, 5: 11, 6: 11, 7: 11, 8: 11, 9: 8, 10: 8, 11: 8, 12: 8,
13: 8, 14: 8, 15: 7, 16: 7, 17: 7, 18: 7, 19: 7, 20: 7, 21: 7, 22: 7, 23: 7, 24: 7,
25: 6, 26: 6, 27: 6, 28: 6, 29: 6, 30: 6, 31: 6, 32: 6, 33: 10, 34: 10, 35: 10, 36: 10,
37: 10, 38: 10, 39: 10, 40: 10, 41: 10, 42: 10, 43: 5, 44: 5, 45: 5, 46: 5, 47: 5, 48: 5,
49: 5, 50: 5, 51: 2, 52: 2, 53: 2, 54: 2, 55: 2, 56: 2, 57: 2, 58: 2, 59: 2, 60: 2,
61: 3, 62: 3, 63: 3, 64: 3, 65: 3, 66: 3, 67: 3, 68: 3, 69: 3, 70: 3, 71: 0, 72: 0,
73: 0, 74: 0, 75: 0, 76: 0, 77: 1, 78: 1, 79: 1, 80: 1, 81: 1, 82: 1, 83: 4, 84: 4,
85: 4, 86: 4, 87: 4, 88: 4, 89: 4, 90: 4, 91: 17, 92: 17, 93: 22, 94: 20, 95: 20, 96: 22,
97: 15, 98: 25, 99: 16, 100: 13, 101: 12, 102: 12, 103: 17, 104: 17, 105: 23, 106: 15,
107: 15, 108: 17, 109: 15, 110: 21, 111: 15, 112: 25, 113: 13, 114: 13, 115: 13, 116: 13,
117: 13, 118: 22, 119: 26, 120: 14, 121: 14, 122: 15, 123: 22, 124: 21, 125: 21, 126: 24,
127: 20, 128: 22, 129: 15, 130: 17, 131: 16, 132: 15, 133: 22, 134: 24, 135: 21, 136: 17,
137: 25, 138: 16, 139: 21, 140: 17, 141: 22, 142: 16, 143: 21, 144: 21, 145: 25, 146: 21,
147: 26, 148: 21, 149: 24, 150: 20, 151: 17, 152: 14, 153: 21, 154: 26, 155: 15, 156: 23,
157: 20, 158: 21, 159: 24, 160: 15, 161: 24, 162: 22, 163: 25, 164: 15, 165: 20, 166: 17,
167: 17, 168: 22, 169: 14, 170: 18, 171: 18, 172: 18, 173: 18, 174: 18, 175: 18, 176: 18,
177: 26, 178: 26, 179: 19, 180: 19, 181: 24}
self._label_names = [
"ground-stuff",
"plant-stuff",
"sky-stuff",
]
self.cocostuff3_coarse_classes = [23, 22, 21]
self.first_stuff_index = 12
def __getitem__(self, index):
image_path = self.image_files[index]
label_path = self.label_files[index]
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
img = self.transform(Image.open(image_path).convert("RGB"))
random.seed(seed)
torch.manual_seed(seed)
label = self.label_transform(Image.open(label_path)).squeeze(0)
label[label == 255] = -1 # to be consistent with 10k
coarse_label = torch.zeros_like(label)
for fine, coarse in self.fine_to_coarse.items():
coarse_label[label == fine] = coarse
coarse_label[label == -1] = -1
if self.coarse_labels:
coarser_labels = -torch.ones_like(label)
for i, c in enumerate(self.cocostuff3_coarse_classes):
coarser_labels[coarse_label == c] = i
return img, coarser_labels, coarser_labels >= 0
else:
if self.exclude_things:
return img, coarse_label - self.first_stuff_index, (coarse_label >= self.first_stuff_index)
else:
return img, coarse_label, coarse_label >= 0
def __len__(self):
return len(self.image_files)
class CityscapesSeg(Dataset):
def __init__(self, root, image_set, transform, target_transform):
super(CityscapesSeg, self).__init__()
self.split = image_set
self.root = join(root, "cityscapes")
if image_set == "train":
# our_image_set = "train_extra"
# mode = "coarse"
our_image_set = "train"
mode = "fine"
else:
our_image_set = image_set
mode = "fine"
self.inner_loader = Cityscapes(self.root, our_image_set,
mode=mode,
target_type="semantic",
transform=None,
target_transform=None)
self.transform = transform
self.target_transform = target_transform
self.first_nonvoid = 7
def __getitem__(self, index):
if self.transform is not None:
image, target = self.inner_loader[index]
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
image = self.transform(image)
random.seed(seed)
torch.manual_seed(seed)
target = self.target_transform(target)
target = target - self.first_nonvoid
target[target < 0] = -1
mask = target == -1
return image, target.squeeze(0), mask
else:
return self.inner_loader[index]
def __len__(self):
return len(self.inner_loader)
class CroppedDataset(Dataset):
def __init__(self, root, dataset_name, crop_type, crop_ratio, image_set, transform, target_transform):
super(CroppedDataset, self).__init__()
self.dataset_name = dataset_name
self.split = image_set
self.root = join(root, "cropped", "{}_{}_crop_{}".format(dataset_name, crop_type, crop_ratio))
self.transform = transform
self.target_transform = target_transform
self.img_dir = join(self.root, "img", self.split)
self.label_dir = join(self.root, "label", self.split)
self.num_images = len(os.listdir(self.img_dir))
assert self.num_images == len(os.listdir(self.label_dir))
def __getitem__(self, index):
image = Image.open(join(self.img_dir, "{}.jpg".format(index))).convert('RGB')
target = Image.open(join(self.label_dir, "{}.png".format(index)))
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
image = self.transform(image)
random.seed(seed)
torch.manual_seed(seed)
target = self.target_transform(target)
target = target - 1
mask = target == -1
return image, target.squeeze(0), mask
def __len__(self):
return self.num_images
class MaterializedDataset(Dataset):
def __init__(self, ds):
self.ds = ds
self.materialized = []
loader = DataLoader(ds, num_workers=12, collate_fn=lambda l: l[0])
for batch in tqdm(loader):
self.materialized.append(batch)
def __len__(self):
return len(self.ds)
def __getitem__(self, ind):
return self.materialized[ind]
class ContrastiveSegDataset(Dataset):
def __init__(self,
pytorch_data_dir,
dataset_name,
crop_type,
image_set,
transform,
target_transform,
cfg,
aug_geometric_transform=None,
aug_photometric_transform=None,
num_neighbors=5,
compute_knns=False,
mask=False,
pos_labels=False,
pos_images=False,
extra_transform=None,
model_type_override=None
):
super(ContrastiveSegDataset).__init__()
self.num_neighbors = num_neighbors
self.image_set = image_set
self.dataset_name = dataset_name
self.mask = mask
self.pos_labels = pos_labels
self.pos_images = pos_images
self.extra_transform = extra_transform
if dataset_name == "potsdam":
self.n_classes = 3
dataset_class = Potsdam
extra_args = dict(coarse_labels=True)
elif dataset_name == "potsdamraw":
self.n_classes = 3
dataset_class = PotsdamRaw
extra_args = dict(coarse_labels=True)
elif dataset_name == "directory":
self.n_classes = cfg.dir_dataset_n_classes
dataset_class = DirectoryDataset
extra_args = dict(path=cfg.dir_dataset_name)
elif dataset_name == "cityscapes" and crop_type is None:
self.n_classes = 27
dataset_class = CityscapesSeg
extra_args = dict()
elif dataset_name == "cityscapes" and crop_type is not None:
self.n_classes = 27
dataset_class = CroppedDataset
extra_args = dict(dataset_name="cityscapes", crop_type=crop_type, crop_ratio=cfg.crop_ratio)
elif dataset_name == "cocostuff3":
self.n_classes = 3
dataset_class = Coco
extra_args = dict(coarse_labels=True, subset=6, exclude_things=True)
elif dataset_name == "cocostuff15":
self.n_classes = 15
dataset_class = Coco
extra_args = dict(coarse_labels=False, subset=7, exclude_things=True)
elif dataset_name == "cocostuff27" and crop_type is not None:
self.n_classes = 27
dataset_class = CroppedDataset
extra_args = dict(dataset_name="cocostuff27", crop_type=cfg.crop_type, crop_ratio=cfg.crop_ratio)
elif dataset_name == "cocostuff27" and crop_type is None:
self.n_classes = 27
dataset_class = Coco
extra_args = dict(coarse_labels=False, subset=None, exclude_things=False)
if image_set == "val":
extra_args["subset"] = 7
else:
raise ValueError("Unknown dataset: {}".format(dataset_name))
self.aug_geometric_transform = aug_geometric_transform
self.aug_photometric_transform = aug_photometric_transform
self.dataset = dataset_class(
root=pytorch_data_dir,
image_set=self.image_set,
transform=transform,
target_transform=target_transform, **extra_args)
if model_type_override is not None:
model_type = model_type_override
else:
model_type = cfg.model_type
nice_dataset_name = cfg.dir_dataset_name if dataset_name == "directory" else dataset_name
feature_cache_file = join(pytorch_data_dir, "nns", "nns_{}_{}_{}_{}_{}.npz".format(
model_type, nice_dataset_name, image_set, crop_type, cfg.res))
if pos_labels or pos_images:
if not os.path.exists(feature_cache_file) or compute_knns:
raise ValueError("could not find nn file {} please run precompute_knns".format(feature_cache_file))
else:
loaded = np.load(feature_cache_file)
self.nns = loaded["nns"]
assert len(self.dataset) == self.nns.shape[0]
def __len__(self):
return len(self.dataset)
def _set_seed(self, seed):
random.seed(seed) # apply this seed to img tranfsorms
torch.manual_seed(seed) # needed for torchvision 0.7
def __getitem__(self, ind):
pack = self.dataset[ind]
if self.pos_images or self.pos_labels:
ind_pos = self.nns[ind][torch.randint(low=1, high=self.num_neighbors + 1, size=[]).item()]
pack_pos = self.dataset[ind_pos]
seed = np.random.randint(2147483647) # make a seed with numpy generator
self._set_seed(seed)
coord_entries = torch.meshgrid([torch.linspace(-1, 1, pack[0].shape[1]),
torch.linspace(-1, 1, pack[0].shape[2])])
coord = torch.cat([t.unsqueeze(0) for t in coord_entries], 0)
if self.extra_transform is not None:
extra_trans = self.extra_transform
else:
extra_trans = lambda i, x: x
def squeeze_tuple(label_raw):
if type(label_raw) == tuple:
return tuple(x.squeeze() for x in label_raw)
else:
return label_raw.squeeze()
ret = {
"ind": ind,
"img": extra_trans(ind, pack[0]),
"label": squeeze_tuple(extra_trans(ind, pack[1]))
}
if self.pos_images:
ret["img_pos"] = extra_trans(ind, pack_pos[0])
ret["ind_pos"] = ind_pos
if self.mask:
ret["mask"] = pack[2]
if self.pos_labels:
ret["label_pos"] = squeeze_tuple(extra_trans(ind, pack_pos[1]))
ret["mask_pos"] = pack_pos[2]
if self.aug_photometric_transform is not None:
img_aug = self.aug_photometric_transform(self.aug_geometric_transform(pack[0]))
self._set_seed(seed)
coord_aug = self.aug_geometric_transform(coord)
ret["img_aug"] = img_aug
ret["coord_aug"] = coord_aug.permute(1, 2, 0)
return ret
|