File size: 18,654 Bytes
5c718d1
 
 
 
 
 
 
 
 
 
 
 
9fcd62f
5c718d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
from utils import *
from modules import *
from data import *
import torch.nn.functional as F
import pytorch_lightning as pl
import torch.multiprocessing
import seaborn as sns
import unet

class LitUnsupervisedSegmenter(pl.LightningModule):
    def __init__(self, n_classes, cfg):
        super().__init__()
        self.name = "LitUnsupervisedSegmenter"
        self.cfg = cfg
        self.n_classes = n_classes

        if not cfg.continuous:
            dim = n_classes
        else:
            dim = cfg.dim

        data_dir = join(cfg.output_root, "data")
        if cfg.arch == "feature-pyramid":
            cut_model = load_model(cfg.model_type, data_dir).cuda()
            self.net = FeaturePyramidNet(
                cfg.granularity, cut_model, dim, cfg.continuous
            )
        elif cfg.arch == "dino":
            self.net = DinoFeaturizer(dim, cfg)
        else:
            raise ValueError("Unknown arch {}".format(cfg.arch))

        self.train_cluster_probe = ClusterLookup(dim, n_classes)

        self.cluster_probe = ClusterLookup(dim, n_classes + cfg.extra_clusters)
        #         self.linear_probe = nn.Conv2d(dim, n_classes, (1, 1))
        #         self.linear_probe = nn.Sequential(OrderedDict([
        #           ('conv1', nn.Conv2d(dim, 2*n_classes, (7, 7), padding='same')),
        #           ('relu1', nn.ReLU()),
        #           ('conv2', nn.Conv2d(2*n_classes, n_classes, (3, 3), padding='same'))
        #         ]))
        self.linear_probe = unet.AuxUNet(
            enc_chs=(3, 32, 64, 128, 256),
            dec_chs=(256, 128, 64, 32),
            aux_ch=70,
            num_class=n_classes,
        )

        self.decoder = nn.Conv2d(dim, self.net.n_feats, (1, 1))

        self.cluster_metrics = UnsupervisedMetrics(
            "test/cluster/", n_classes, cfg.extra_clusters, True
        )
        self.linear_metrics = UnsupervisedMetrics("test/linear/", n_classes, 0, False)

        self.test_cluster_metrics = UnsupervisedMetrics(
            "final/cluster/", n_classes, cfg.extra_clusters, True
        )
        self.test_linear_metrics = UnsupervisedMetrics(
            "final/linear/", n_classes, 0, False
        )

        self.linear_probe_loss_fn = torch.nn.CrossEntropyLoss()
        self.crf_loss_fn = ContrastiveCRFLoss(
            cfg.crf_samples, cfg.alpha, cfg.beta, cfg.gamma, cfg.w1, cfg.w2, cfg.shift
        )

        self.contrastive_corr_loss_fn = ContrastiveCorrelationLoss(cfg)
        for p in self.contrastive_corr_loss_fn.parameters():
            p.requires_grad = False

        self.automatic_optimization = False

        if self.cfg.dataset_name.startswith("cityscapes"):
            self.label_cmap = create_cityscapes_colormap()
        else:
            self.label_cmap = create_pascal_label_colormap()

        self.val_steps = 0
        self.save_hyperparameters()

    def forward(self, x):
        # in lightning, forward defines the prediction/inference actions
        return self.net(x)[1]

    def training_step(self, batch, batch_idx):
        # training_step defined the train loop.
        # It is independent of forward
        net_optim, linear_probe_optim, cluster_probe_optim = self.optimizers()

        net_optim.zero_grad()
        linear_probe_optim.zero_grad()
        cluster_probe_optim.zero_grad()

        with torch.no_grad():
            ind = batch["ind"]
            img = batch["img"]
            img_aug = batch["img_aug"]
            coord_aug = batch["coord_aug"]
            img_pos = batch["img_pos"]
            label = batch["label"]
            label_pos = batch["label_pos"]

        feats, code = self.net(img)
        if self.cfg.correspondence_weight > 0:
            feats_pos, code_pos = self.net(img_pos)
        log_args = dict(sync_dist=False, rank_zero_only=True)

        if self.cfg.use_true_labels:
            signal = one_hot_feats(label + 1, self.n_classes + 1)
            signal_pos = one_hot_feats(label_pos + 1, self.n_classes + 1)
        else:
            signal = feats
            signal_pos = feats_pos

        loss = 0

        should_log_hist = (
            (self.cfg.hist_freq is not None)
            and (self.global_step % self.cfg.hist_freq == 0)
            and (self.global_step > 0)
        )
        if self.cfg.use_salience:
            salience = batch["mask"].to(torch.float32).squeeze(1)
            salience_pos = batch["mask_pos"].to(torch.float32).squeeze(1)
        else:
            salience = None
            salience_pos = None

        if self.cfg.correspondence_weight > 0:
            (
                pos_intra_loss,
                pos_intra_cd,
                pos_inter_loss,
                pos_inter_cd,
                neg_inter_loss,
                neg_inter_cd,
            ) = self.contrastive_corr_loss_fn(
                signal,
                signal_pos,
                salience,
                salience_pos,
                code,
                code_pos,
            )

            if should_log_hist:
                self.logger.experiment.add_histogram(
                    "intra_cd", pos_intra_cd, self.global_step
                )
                self.logger.experiment.add_histogram(
                    "inter_cd", pos_inter_cd, self.global_step
                )
                self.logger.experiment.add_histogram(
                    "neg_cd", neg_inter_cd, self.global_step
                )
            neg_inter_loss = neg_inter_loss.mean()
            pos_intra_loss = pos_intra_loss.mean()
            pos_inter_loss = pos_inter_loss.mean()
            self.log("loss/pos_intra", pos_intra_loss, **log_args)
            self.log("loss/pos_inter", pos_inter_loss, **log_args)
            self.log("loss/neg_inter", neg_inter_loss, **log_args)
            self.log("cd/pos_intra", pos_intra_cd.mean(), **log_args)
            self.log("cd/pos_inter", pos_inter_cd.mean(), **log_args)
            self.log("cd/neg_inter", neg_inter_cd.mean(), **log_args)

            loss += (
                self.cfg.pos_inter_weight * pos_inter_loss
                + self.cfg.pos_intra_weight * pos_intra_loss
                + self.cfg.neg_inter_weight * neg_inter_loss
            ) * self.cfg.correspondence_weight

        if self.cfg.rec_weight > 0:
            rec_feats = self.decoder(code)
            rec_loss = -(norm(rec_feats) * norm(feats)).sum(1).mean()
            self.log("loss/rec", rec_loss, **log_args)
            loss += self.cfg.rec_weight * rec_loss

        if self.cfg.aug_alignment_weight > 0:
            orig_feats_aug, orig_code_aug = self.net(img_aug)
            downsampled_coord_aug = resize(
                coord_aug.permute(0, 3, 1, 2), orig_code_aug.shape[2]
            ).permute(0, 2, 3, 1)
            aug_alignment = -torch.einsum(
                "bkhw,bkhw->bhw",
                norm(sample(code, downsampled_coord_aug)),
                norm(orig_code_aug),
            ).mean()
            self.log("loss/aug_alignment", aug_alignment, **log_args)
            loss += self.cfg.aug_alignment_weight * aug_alignment

        if self.cfg.crf_weight > 0:
            crf = self.crf_loss_fn(resize(img, 56), norm(resize(code, 56))).mean()
            self.log("loss/crf", crf, **log_args)
            loss += self.cfg.crf_weight * crf

        flat_label = label.reshape(-1)
        mask = (flat_label >= 0) & (flat_label < self.n_classes)

        detached_code = torch.clone(code.detach())

        #         pdb.set_trace()

        linear_logits = self.linear_probe(img, detached_code)
        linear_logits = F.interpolate(
            linear_logits, label.shape[-2:], mode="bilinear", align_corners=False
        )
        linear_logits = linear_logits.permute(0, 2, 3, 1).reshape(-1, self.n_classes)
        linear_loss = self.linear_probe_loss_fn(
            linear_logits[mask], flat_label[mask]
        ).mean()
        loss += linear_loss
        self.log("loss/linear", linear_loss, **log_args)

        cluster_loss, cluster_probs = self.cluster_probe(detached_code, None)
        loss += cluster_loss
        self.log("loss/cluster", cluster_loss, **log_args)
        self.log("loss/total", loss, **log_args)

        self.manual_backward(loss)
        net_optim.step()
        cluster_probe_optim.step()
        linear_probe_optim.step()

        if (
            self.cfg.reset_probe_steps is not None
            and self.global_step == self.cfg.reset_probe_steps
        ):
            print("RESETTING PROBES")
            self.linear_probe.reset_parameters()
            self.cluster_probe.reset_parameters()
            self.trainer.optimizers[1] = torch.optim.Adam(
                list(self.linear_probe.parameters()), lr=5e-3
            )
            self.trainer.optimizers[2] = torch.optim.Adam(
                list(self.cluster_probe.parameters()), lr=5e-3
            )

        if self.global_step % 2000 == 0 and self.global_step > 0:
            print("RESETTING TFEVENT FILE")
            # Make a new tfevent file
            self.logger.experiment.close()
            self.logger.experiment._get_file_writer()

        return loss

    def on_train_start(self):
        tb_metrics = {**self.linear_metrics.compute(), **self.cluster_metrics.compute()}
        self.logger.log_hyperparams(self.cfg, tb_metrics)

    def validation_step(self, batch, batch_idx):
        img = batch["img"]
        label = batch["label"]
        self.net.eval()

        with torch.no_grad():
            feats, code = self.net(img)

            #             code = F.interpolate(code, label.shape[-2:], mode='bilinear', align_corners=False)
            # linear_preds = self.linear_probe(code)
            linear_preds = self.linear_probe(img, code)
            linear_preds = linear_preds.argmax(1)
            self.linear_metrics.update(linear_preds, label)

            code = F.interpolate(
                code, label.shape[-2:], mode="bilinear", align_corners=False
            )
            cluster_loss, cluster_preds = self.cluster_probe(code, None)
            cluster_preds = cluster_preds.argmax(1)
            self.cluster_metrics.update(cluster_preds, label)

            return {
                "img": img[: self.cfg.n_images].detach().cpu(),
                "linear_preds": linear_preds[: self.cfg.n_images].detach().cpu(),
                "cluster_preds": cluster_preds[: self.cfg.n_images].detach().cpu(),
                "label": label[: self.cfg.n_images].detach().cpu(),
            }

    def validation_epoch_end(self, outputs) -> None:
        super().validation_epoch_end(outputs)
        with torch.no_grad():
            tb_metrics = {
                **self.linear_metrics.compute(),
                **self.cluster_metrics.compute(),
            }

            if self.trainer.is_global_zero and not self.cfg.submitting_to_aml:
                # output_num = 0
                output_num = random.randint(0, len(outputs) - 1)
                output = {k: v.detach().cpu() for k, v in outputs[output_num].items()}

                #                 pdb.set_trace()
                alpha = 0.4
                n_rows = 6
                fig, ax = plt.subplots(
                    n_rows,
                    self.cfg.n_images,
                    figsize=(self.cfg.n_images * 3, n_rows * 3),
                )
                for i in range(self.cfg.n_images):
                    try:
                        rbg_img = prep_for_plot(output["img"][i])
                        true_label = output["label"].squeeze()[i]
                        true_label[true_label == -1] = 7
                    except:
                        continue
                    #                     ax[0, i].imshow(prep_for_plot(output["img"][i]))
                    #                     ax[1, i].imshow(self.label_cmap[output["label"].squeeze()[i]])
                    #                     ax[2, i].imshow(self.label_cmap[output["linear_preds"][i]])
                    #                     ax[3, i].imshow(self.label_cmap[self.cluster_metrics.map_clusters(output["cluster_preds"][i])])
                    ax[0, i].imshow(rbg_img)

                    ax[1, i].imshow(rbg_img)
                    ax[1, i].imshow(true_label, alpha=alpha, cmap=cmap, norm=norm)

                    ax[2, i].imshow(rbg_img)
                    pred_label = output["linear_preds"][i]
                    ax[2, i].imshow(pred_label, alpha=alpha, cmap=cmap, norm=norm)

                    ax[3, i].imshow(rbg_img)
                    retouched_label = retouch_label(pred_label.numpy(), true_label)
                    ax[3, i].imshow(retouched_label, alpha=alpha, cmap=cmap, norm=norm)

                    ax[4, i].imshow(rbg_img)
                    pred_label = self.cluster_metrics.map_clusters(
                        output["cluster_preds"][i]
                    )
                    ax[4, i].imshow(pred_label, alpha=alpha, cmap=cmap, norm=norm)
                    #             ax[3, i].imshow(map_clusters_with_label(true_label, pred_label), alpha=0.5, cmap=cmap, norm=norm)

                    ax[5, i].imshow(rbg_img)
                    retouched_label = retouch_label(pred_label.numpy(), true_label)
                    ax[5, i].imshow(retouched_label, alpha=alpha, cmap=cmap, norm=norm)

                ax[0, 0].set_ylabel("Image", fontsize=16)
                ax[1, 0].set_ylabel("Label", fontsize=16)
                ax[2, 0].set_ylabel("UNet Probe", fontsize=16)
                ax[3, 0].set_ylabel("Retouched UNet Probe", fontsize=16)
                ax[4, 0].set_ylabel("Cluster Probe", fontsize=16)
                ax[5, 0].set_ylabel("Retouched cluster Probe", fontsize=16)
                remove_axes(ax)
                plt.tight_layout()
                add_plot(self.logger.experiment, "plot_labels", self.global_step)

                if self.cfg.has_labels:
                    fig = plt.figure(figsize=(13, 10))
                    ax = fig.gca()
                    hist = (
                        self.cluster_metrics.histogram.detach().cpu().to(torch.float32)
                    )
                    hist /= torch.clamp_min(hist.sum(dim=0, keepdim=True), 1)
                    sns.heatmap(hist.t(), annot=False, fmt="g", ax=ax, cmap="Blues")
                    ax.set_xlabel("Predicted labels")
                    ax.set_ylabel("True labels")
                    names = get_class_labels(self.cfg.dataset_name)
                    if self.cfg.extra_clusters:
                        names = names + ["Extra"]
                    ax.set_xticks(np.arange(0, len(names)) + 0.5)
                    ax.set_yticks(np.arange(0, len(names)) + 0.5)
                    ax.xaxis.tick_top()
                    ax.xaxis.set_ticklabels(names, fontsize=14)
                    ax.yaxis.set_ticklabels(names, fontsize=14)
                    colors = [self.label_cmap[i] / 255.0 for i in range(len(names))]
                    [
                        t.set_color(colors[i])
                        for i, t in enumerate(ax.xaxis.get_ticklabels())
                    ]
                    [
                        t.set_color(colors[i])
                        for i, t in enumerate(ax.yaxis.get_ticklabels())
                    ]
                    # ax.yaxis.get_ticklabels()[-1].set_color(self.label_cmap[0] / 255.0)
                    # ax.xaxis.get_ticklabels()[-1].set_color(self.label_cmap[0] / 255.0)
                    plt.xticks(rotation=90)
                    plt.yticks(rotation=0)
                    ax.vlines(
                        np.arange(0, len(names) + 1),
                        color=[0.5, 0.5, 0.5],
                        *ax.get_xlim()
                    )
                    ax.hlines(
                        np.arange(0, len(names) + 1),
                        color=[0.5, 0.5, 0.5],
                        *ax.get_ylim()
                    )
                    plt.tight_layout()
                    add_plot(self.logger.experiment, "conf_matrix", self.global_step)

                    all_bars = torch.cat(
                        [
                            self.cluster_metrics.histogram.sum(0).cpu(),
                            self.cluster_metrics.histogram.sum(1).cpu(),
                        ],
                        axis=0,
                    )
                    ymin = max(all_bars.min() * 0.8, 1)
                    ymax = all_bars.max() * 1.2

                    fig, ax = plt.subplots(1, 2, figsize=(2 * 5, 1 * 4))
                    ax[0].bar(
                        range(self.n_classes + self.cfg.extra_clusters),
                        self.cluster_metrics.histogram.sum(0).cpu(),
                        tick_label=names,
                        color=colors,
                    )
                    ax[0].set_ylim(ymin, ymax)
                    ax[0].set_title("Label Frequency")
                    ax[0].set_yscale("log")
                    ax[0].tick_params(axis="x", labelrotation=90)

                    ax[1].bar(
                        range(self.n_classes + self.cfg.extra_clusters),
                        self.cluster_metrics.histogram.sum(1).cpu(),
                        tick_label=names,
                        color=colors,
                    )
                    ax[1].set_ylim(ymin, ymax)
                    ax[1].set_title("Cluster Frequency")
                    ax[1].set_yscale("log")
                    ax[1].tick_params(axis="x", labelrotation=90)

                    plt.tight_layout()
                    add_plot(
                        self.logger.experiment, "label frequency", self.global_step
                    )

            if self.global_step > 2:
                self.log_dict(tb_metrics)

                if self.trainer.is_global_zero and self.cfg.azureml_logging:
                    from azureml.core.run import Run

                    run_logger = Run.get_context()
                    for metric, value in tb_metrics.items():
                        run_logger.log(metric, value)

            self.linear_metrics.reset()
            self.cluster_metrics.reset()

    def configure_optimizers(self):
        main_params = list(self.net.parameters())

        if self.cfg.rec_weight > 0:
            main_params.extend(self.decoder.parameters())

        net_optim = torch.optim.Adam(main_params, lr=self.cfg.lr)
        linear_probe_optim = torch.optim.Adam(
            list(self.linear_probe.parameters()), lr=5e-3
        )
        cluster_probe_optim = torch.optim.Adam(
            list(self.cluster_probe.parameters()), lr=5e-3
        )

        return net_optim, linear_probe_optim, cluster_probe_optim