Spaces:
Runtime error
Runtime error
jeremyLE-Ekimetrics
commited on
Commit
·
23a53cd
1
Parent(s):
9780f87
Update biomap/app.py
Browse files- biomap/app.py +110 -110
biomap/app.py
CHANGED
@@ -1,110 +1,110 @@
|
|
1 |
-
from plot_functions import *
|
2 |
-
import hydra
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from model import LitUnsupervisedSegmenter
|
6 |
-
from helper import inference_on_location_and_month, inference_on_location
|
7 |
-
from plot_functions import segment_region
|
8 |
-
|
9 |
-
from functools import partial
|
10 |
-
import gradio as gr
|
11 |
-
import logging
|
12 |
-
|
13 |
-
import geopandas as gpd
|
14 |
-
mapbox_access_token = "pk.eyJ1IjoiamVyZW15LWVraW1ldHJpY3MiLCJhIjoiY2xrNjBwNGU2MDRhMjNqbWw0YTJrbnpvNCJ9.poVyIzhJuJmD6ffrL9lm2w"
|
15 |
-
geo_df = gpd.read_file(gpd.datasets.get_path('naturalearth_cities'))
|
16 |
-
|
17 |
-
def get_geomap(long, lat ):
|
18 |
-
|
19 |
-
|
20 |
-
fig = go.Figure(go.Scattermapbox(
|
21 |
-
lat=geo_df.geometry.y,
|
22 |
-
lon=geo_df.geometry.x,
|
23 |
-
mode='markers',
|
24 |
-
marker=go.scattermapbox.Marker(
|
25 |
-
size=14
|
26 |
-
),
|
27 |
-
text=geo_df.name,
|
28 |
-
))
|
29 |
-
|
30 |
-
fig.add_trace(go.Scattermapbox(lat=[lat],
|
31 |
-
lon=[long],
|
32 |
-
mode='markers',
|
33 |
-
marker=go.scattermapbox.Marker(
|
34 |
-
size=14
|
35 |
-
),
|
36 |
-
marker_color="green",
|
37 |
-
text=['Actual position']))
|
38 |
-
|
39 |
-
fig.update_layout(
|
40 |
-
showlegend=False,
|
41 |
-
hovermode='closest',
|
42 |
-
mapbox=dict(
|
43 |
-
accesstoken=mapbox_access_token,
|
44 |
-
center=go.layout.mapbox.Center(
|
45 |
-
lat=lat,
|
46 |
-
lon=long
|
47 |
-
),
|
48 |
-
zoom=3
|
49 |
-
)
|
50 |
-
)
|
51 |
-
|
52 |
-
return fig
|
53 |
-
|
54 |
-
|
55 |
-
if __name__ == "__main__":
|
56 |
-
|
57 |
-
|
58 |
-
logging.basicConfig(filename='example.log', encoding='utf-8', level=logging.INFO)
|
59 |
-
# Initialize hydra with configs
|
60 |
-
#hydra.initialize(config_path="configs", job_name="corine")
|
61 |
-
cfg = hydra.compose(config_name="my_train_config.yml")
|
62 |
-
logging.info(f"config : {cfg}")
|
63 |
-
# Load the model
|
64 |
-
|
65 |
-
nbclasses = cfg.dir_dataset_n_classes
|
66 |
-
model = LitUnsupervisedSegmenter(nbclasses, cfg)
|
67 |
-
logging.info(f"Model Initialiazed")
|
68 |
-
|
69 |
-
model_path = "checkpoint/model/model.pt"
|
70 |
-
saved_state_dict = torch.load(model_path, map_location=torch.device("cpu"))
|
71 |
-
logging.info(f"Model weights Loaded")
|
72 |
-
model.load_state_dict(saved_state_dict)
|
73 |
-
logging.info(f"Model Loaded")
|
74 |
-
# css=".VIDEO video{height: 100%;width:50%;margin:auto};.VIDEO{height: 50%;};.svelte-1vnmhm4{height:auto}"
|
75 |
-
with gr.Blocks() as demo:
|
76 |
-
gr.Markdown("Estimate Biodiversity in the world.")
|
77 |
-
with gr.Tab("Single Image"):
|
78 |
-
with gr.Row():
|
79 |
-
input_map = gr.Plot().style()
|
80 |
-
with gr.Column():
|
81 |
-
input_latitude = gr.Number(label="lattitude", value=2.98)
|
82 |
-
input_longitude = gr.Number(label="longitude", value=48.81)
|
83 |
-
input_date = gr.Textbox(label="start_date", value="2020-03-20")
|
84 |
-
|
85 |
-
single_button = gr.Button("Predict")
|
86 |
-
with gr.Row():
|
87 |
-
raw_image = gr.Image(label = "Localisation visualization")
|
88 |
-
output_image = gr.Image(label = "Labeled visualisation")
|
89 |
-
score_biodiv = gr.Number(label = "Biodiversity score")
|
90 |
-
|
91 |
-
with gr.Tab("TimeLapse"):
|
92 |
-
with gr.Row():
|
93 |
-
input_map_2 = gr.Plot().style()
|
94 |
-
with gr.Row():
|
95 |
-
timelapse_input_latitude = gr.Number(value=2.98, label="Latitude")
|
96 |
-
timelapse_input_longitude = gr.Number(value=48.81, label="Longitude")
|
97 |
-
timelapse_start_date = gr.Textbox(value='2020-05-01', label="Start Date")
|
98 |
-
timelapse_end_date = gr.Textbox(value='2020-06-30', label="End Date")
|
99 |
-
segmentation = gr.CheckboxGroup(choices=['month', 'year', '2months'], value=['month'], label="Select Segmentation Level:")
|
100 |
-
timelapse_button = gr.Button(value="Predict")
|
101 |
-
map = gr.Plot().style()
|
102 |
-
|
103 |
-
demo.load(get_geomap, [input_latitude, input_longitude], input_map)
|
104 |
-
single_button.click(get_geomap, [input_latitude, input_longitude], input_map)
|
105 |
-
single_button.click(partial(inference_on_location_and_month, model), inputs=[input_latitude, input_longitude, input_date], outputs=[raw_image, output_image,score_biodiv])
|
106 |
-
|
107 |
-
demo.load(get_geomap, [timelapse_input_latitude, timelapse_input_longitude], input_map_2)
|
108 |
-
timelapse_button.click(get_geomap, [timelapse_input_latitude, timelapse_input_longitude], input_map_2)
|
109 |
-
timelapse_button.click(segment_region, inputs=[timelapse_input_latitude, timelapse_input_longitude, timelapse_start_date, timelapse_end_date,segmentation], outputs=[map])
|
110 |
-
demo.launch(share=True)
|
|
|
1 |
+
from plot_functions import *
|
2 |
+
import hydra
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from model import LitUnsupervisedSegmenter
|
6 |
+
from helper import inference_on_location_and_month, inference_on_location
|
7 |
+
from plot_functions import segment_region
|
8 |
+
|
9 |
+
from functools import partial
|
10 |
+
import gradio as gr
|
11 |
+
import logging
|
12 |
+
|
13 |
+
import geopandas as gpd
|
14 |
+
mapbox_access_token = "pk.eyJ1IjoiamVyZW15LWVraW1ldHJpY3MiLCJhIjoiY2xrNjBwNGU2MDRhMjNqbWw0YTJrbnpvNCJ9.poVyIzhJuJmD6ffrL9lm2w"
|
15 |
+
geo_df = gpd.read_file(gpd.datasets.get_path('naturalearth_cities'))
|
16 |
+
|
17 |
+
def get_geomap(long, lat ):
|
18 |
+
|
19 |
+
|
20 |
+
fig = go.Figure(go.Scattermapbox(
|
21 |
+
lat=geo_df.geometry.y,
|
22 |
+
lon=geo_df.geometry.x,
|
23 |
+
mode='markers',
|
24 |
+
marker=go.scattermapbox.Marker(
|
25 |
+
size=14
|
26 |
+
),
|
27 |
+
text=geo_df.name,
|
28 |
+
))
|
29 |
+
|
30 |
+
fig.add_trace(go.Scattermapbox(lat=[lat],
|
31 |
+
lon=[long],
|
32 |
+
mode='markers',
|
33 |
+
marker=go.scattermapbox.Marker(
|
34 |
+
size=14
|
35 |
+
),
|
36 |
+
marker_color="green",
|
37 |
+
text=['Actual position']))
|
38 |
+
|
39 |
+
fig.update_layout(
|
40 |
+
showlegend=False,
|
41 |
+
hovermode='closest',
|
42 |
+
mapbox=dict(
|
43 |
+
accesstoken=mapbox_access_token,
|
44 |
+
center=go.layout.mapbox.Center(
|
45 |
+
lat=lat,
|
46 |
+
lon=long
|
47 |
+
),
|
48 |
+
zoom=3
|
49 |
+
)
|
50 |
+
)
|
51 |
+
|
52 |
+
return fig
|
53 |
+
|
54 |
+
|
55 |
+
if __name__ == "__main__":
|
56 |
+
|
57 |
+
|
58 |
+
logging.basicConfig(filename='example.log', encoding='utf-8', level=logging.INFO)
|
59 |
+
# Initialize hydra with configs
|
60 |
+
#hydra.initialize(config_path="configs", job_name="corine")
|
61 |
+
cfg = hydra.compose(config_name="my_train_config.yml")
|
62 |
+
logging.info(f"config : {cfg}")
|
63 |
+
# Load the model
|
64 |
+
|
65 |
+
nbclasses = cfg.dir_dataset_n_classes
|
66 |
+
model = LitUnsupervisedSegmenter(nbclasses, cfg)
|
67 |
+
logging.info(f"Model Initialiazed")
|
68 |
+
|
69 |
+
model_path = "biomap/checkpoint/model/model.pt"
|
70 |
+
saved_state_dict = torch.load(model_path, map_location=torch.device("cpu"))
|
71 |
+
logging.info(f"Model weights Loaded")
|
72 |
+
model.load_state_dict(saved_state_dict)
|
73 |
+
logging.info(f"Model Loaded")
|
74 |
+
# css=".VIDEO video{height: 100%;width:50%;margin:auto};.VIDEO{height: 50%;};.svelte-1vnmhm4{height:auto}"
|
75 |
+
with gr.Blocks() as demo:
|
76 |
+
gr.Markdown("Estimate Biodiversity in the world.")
|
77 |
+
with gr.Tab("Single Image"):
|
78 |
+
with gr.Row():
|
79 |
+
input_map = gr.Plot().style()
|
80 |
+
with gr.Column():
|
81 |
+
input_latitude = gr.Number(label="lattitude", value=2.98)
|
82 |
+
input_longitude = gr.Number(label="longitude", value=48.81)
|
83 |
+
input_date = gr.Textbox(label="start_date", value="2020-03-20")
|
84 |
+
|
85 |
+
single_button = gr.Button("Predict")
|
86 |
+
with gr.Row():
|
87 |
+
raw_image = gr.Image(label = "Localisation visualization")
|
88 |
+
output_image = gr.Image(label = "Labeled visualisation")
|
89 |
+
score_biodiv = gr.Number(label = "Biodiversity score")
|
90 |
+
|
91 |
+
with gr.Tab("TimeLapse"):
|
92 |
+
with gr.Row():
|
93 |
+
input_map_2 = gr.Plot().style()
|
94 |
+
with gr.Row():
|
95 |
+
timelapse_input_latitude = gr.Number(value=2.98, label="Latitude")
|
96 |
+
timelapse_input_longitude = gr.Number(value=48.81, label="Longitude")
|
97 |
+
timelapse_start_date = gr.Textbox(value='2020-05-01', label="Start Date")
|
98 |
+
timelapse_end_date = gr.Textbox(value='2020-06-30', label="End Date")
|
99 |
+
segmentation = gr.CheckboxGroup(choices=['month', 'year', '2months'], value=['month'], label="Select Segmentation Level:")
|
100 |
+
timelapse_button = gr.Button(value="Predict")
|
101 |
+
map = gr.Plot().style()
|
102 |
+
|
103 |
+
demo.load(get_geomap, [input_latitude, input_longitude], input_map)
|
104 |
+
single_button.click(get_geomap, [input_latitude, input_longitude], input_map)
|
105 |
+
single_button.click(partial(inference_on_location_and_month, model), inputs=[input_latitude, input_longitude, input_date], outputs=[raw_image, output_image,score_biodiv])
|
106 |
+
|
107 |
+
demo.load(get_geomap, [timelapse_input_latitude, timelapse_input_longitude], input_map_2)
|
108 |
+
timelapse_button.click(get_geomap, [timelapse_input_latitude, timelapse_input_longitude], input_map_2)
|
109 |
+
timelapse_button.click(segment_region, inputs=[timelapse_input_latitude, timelapse_input_longitude, timelapse_start_date, timelapse_end_date,segmentation], outputs=[map])
|
110 |
+
demo.launch(share=True)
|