File size: 3,744 Bytes
f0fc5f8 3d561c7 f0fc5f8 787d3cb f0fc5f8 3d561c7 f0fc5f8 3d561c7 f0fc5f8 787d3cb f0fc5f8 787d3cb f0fc5f8 787d3cb f0fc5f8 787d3cb 3d561c7 f0fc5f8 787d3cb f0fc5f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
# https://python.langchain.com/docs/modules/chains/how_to/custom_chain
# Including reformulation of the question in the chain
import json
from langchain import PromptTemplate, LLMChain
from langchain.chains import RetrievalQAWithSourcesChain,QAWithSourcesChain
from langchain.chains import TransformChain, SequentialChain
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from climateqa.prompts import answer_prompt, reformulation_prompt,audience_prompts
from climateqa.custom_retrieval_chain import CustomRetrievalQAWithSourcesChain
def load_reformulation_chain(llm):
prompt = PromptTemplate(
template = reformulation_prompt,
input_variables=["query"],
)
reformulation_chain = LLMChain(llm = llm,prompt = prompt,output_key="json")
# Parse the output
def parse_output(output):
query = output["query"]
json_output = json.loads(output["json"])
question = json_output.get("question", query)
language = json_output.get("language", "English")
return {
"question": question,
"language": language,
}
transform_chain = TransformChain(
input_variables=["json"], output_variables=["question","language"], transform=parse_output
)
reformulation_chain = SequentialChain(chains = [reformulation_chain,transform_chain],input_variables=["query"],output_variables=["question","language"])
return reformulation_chain
def load_combine_documents_chain(llm):
prompt = PromptTemplate(template=answer_prompt, input_variables=["summaries", "question","audience","language"])
qa_chain = load_qa_with_sources_chain(llm, chain_type="stuff",prompt = prompt)
return qa_chain
def load_qa_chain_with_docs(llm):
"""Load a QA chain with documents.
Useful when you already have retrieved docs
To be called with this input
```
output = chain({
"question":query,
"audience":"experts climate scientists",
"docs":docs,
"language":"English",
})
```
"""
qa_chain = load_combine_documents_chain(llm)
chain = QAWithSourcesChain(
input_docs_key = "docs",
combine_documents_chain = qa_chain,
return_source_documents = True,
)
return chain
def load_qa_chain_with_text(llm):
prompt = PromptTemplate(
template = answer_prompt,
input_variables=["question","audience","language","summaries"],
)
qa_chain = LLMChain(llm = llm,prompt = prompt)
return qa_chain
def load_qa_chain_with_retriever(retriever,llm):
qa_chain = load_combine_documents_chain(llm)
# This could be improved by providing a document prompt to avoid modifying page_content in the docs
# See here https://github.com/langchain-ai/langchain/issues/3523
answer_chain = CustomRetrievalQAWithSourcesChain(
combine_documents_chain = qa_chain,
retriever=retriever,
return_source_documents = True,
verbose = True,
fallback_answer="**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate issues).**",
)
return answer_chain
def load_climateqa_chain(retriever,llm_reformulation,llm_answer):
reformulation_chain = load_reformulation_chain(llm_reformulation)
answer_chain = load_qa_chain_with_retriever(retriever,llm_answer)
climateqa_chain = SequentialChain(
chains = [reformulation_chain,answer_chain],
input_variables=["query","audience"],
output_variables=["answer","question","language","source_documents"],
return_all = True,
verbose = True,
)
return climateqa_chain
|