timeki commited on
Commit
40084ba
·
1 Parent(s): 4c4fe76

fix answer latency when having multiple sources

Browse files
app.py CHANGED
@@ -120,7 +120,7 @@ reranker = get_reranker("nano")
120
  agent = make_graph_agent(llm=llm, vectorstore_ipcc=vectorstore, vectorstore_graphs=vectorstore_graphs, reranker=reranker)
121
 
122
 
123
- async def chat(query,history,audience,sources,reports,current_graphs):
124
  """taking a query and a message history, use a pipeline (reformulation, retriever, answering) to yield a tuple of:
125
  (messages in gradio format, messages in langchain format, source documents)"""
126
 
@@ -136,7 +136,7 @@ async def chat(query,history,audience,sources,reports,current_graphs):
136
  if reports is None or len(reports) == 0:
137
  reports = []
138
 
139
- inputs = {"user_input": query,"audience": audience_prompt,"sources_input":sources}
140
  result = agent.astream_events(inputs,version = "v1")
141
 
142
 
@@ -167,7 +167,16 @@ async def chat(query,history,audience,sources,reports,current_graphs):
167
  if event["event"] == "on_chain_end" and event["name"] == "retrieve_documents" :# when documents are retrieved
168
  docs, docs_html, history, used_documents, related_contents = handle_retrieved_documents(event, history, used_documents)
169
 
170
-
 
 
 
 
 
 
 
 
 
171
  elif event["name"] in steps_display.keys() and event["event"] == "on_chain_start": #display steps
172
  event_description, display_output = steps_display[node]
173
  if not hasattr(history[-1], 'metadata') or history[-1].metadata["title"] != event_description: # if a new step begins
@@ -260,59 +269,59 @@ papers_cols = list(papers_cols_widths.keys())
260
  papers_cols_widths = list(papers_cols_widths.values())
261
 
262
 
263
- async def find_papers(query,after):
264
-
265
- summary = ""
266
- keywords = generate_keywords(query)
267
- df_works = oa.search(keywords,after = after)
268
- df_works = df_works.dropna(subset=["abstract"])
269
- df_works = oa.rerank(query,df_works,reranker)
270
- df_works = df_works.sort_values("rerank_score",ascending=False)
271
- docs_html = []
272
- for i in range(10):
273
- docs_html.append(make_html_df(df_works, i))
274
- docs_html = "".join(docs_html)
275
- print(docs_html)
276
- G = oa.make_network(df_works)
277
 
278
- height = "750px"
279
- network = oa.show_network(G,color_by = "rerank_score",notebook=False,height = height)
280
- network_html = network.generate_html()
281
 
282
- network_html = network_html.replace("'", "\"")
283
- css_to_inject = "<style>#mynetwork { border: none !important; } .card { border: none !important; }</style>"
284
- network_html = network_html + css_to_inject
285
 
286
-
287
- network_html = f"""<iframe style="width: 100%; height: {height};margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
288
- display-capture; encrypted-media;" sandbox="allow-modals allow-forms
289
- allow-scripts allow-same-origin allow-popups
290
- allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
291
- allowpaymentrequest="" frameborder="0" srcdoc='{network_html}'></iframe>"""
292
 
293
 
294
- docs = df_works["content"].head(10).tolist()
295
 
296
- df_works = df_works.reset_index(drop = True).reset_index().rename(columns = {"index":"doc"})
297
- df_works["doc"] = df_works["doc"] + 1
298
- df_works = df_works[papers_cols]
299
 
300
- yield docs_html, network_html, summary
301
 
302
- chain = make_rag_papers_chain(llm)
303
- result = chain.astream_log({"question": query,"docs": docs,"language":"English"})
304
- path_answer = "/logs/StrOutputParser/streamed_output/-"
305
 
306
- async for op in result:
307
 
308
- op = op.ops[0]
309
 
310
- if op['path'] == path_answer: # reforulated question
311
- new_token = op['value'] # str
312
- summary += new_token
313
- else:
314
- continue
315
- yield docs_html, network_html, summary
316
 
317
 
318
 
@@ -473,7 +482,13 @@ with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=t
473
  value=["IPCC"],
474
  interactive=True,
475
  )
476
-
 
 
 
 
 
 
477
  dropdown_reports = gr.Dropdown(
478
  POSSIBLE_REPORTS,
479
  label="Or select specific reports",
@@ -488,9 +503,10 @@ with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=t
488
  value="Experts",
489
  interactive=True,
490
  )
 
491
 
492
- output_query = gr.Textbox(label="Query used for retrieval",show_label = True,elem_id = "reformulated-query",lines = 2,interactive = False)
493
- output_language = gr.Textbox(label="Language",show_label = True,elem_id = "language",lines = 1,interactive = False)
494
 
495
 
496
 
@@ -603,14 +619,14 @@ with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=t
603
 
604
  (textbox
605
  .submit(start_chat, [textbox,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_textbox")
606
- .then(chat, [textbox,chatbot,dropdown_audience, dropdown_sources,dropdown_reports, current_graphs] ,[chatbot,sources_textbox,output_query,output_language, sources_raw, current_graphs],concurrency_limit = 8,api_name = "chat_textbox")
607
  .then(finish_chat, None, [textbox],api_name = "finish_chat_textbox")
608
  # .then(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_sources, tab_figures, tab_recommended_content, tab_papers] )
609
  )
610
 
611
  (examples_hidden
612
  .change(start_chat, [examples_hidden,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_examples")
613
- .then(chat, [examples_hidden,chatbot,dropdown_audience, dropdown_sources,dropdown_reports, current_graphs] ,[chatbot,sources_textbox,output_query,output_language, sources_raw, current_graphs],concurrency_limit = 8,api_name = "chat_textbox")
614
  .then(finish_chat, None, [textbox],api_name = "finish_chat_examples")
615
  # .then(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_sources, tab_figures, tab_recommended_content, tab_papers] )
616
  )
@@ -633,8 +649,8 @@ with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=t
633
 
634
  dropdown_samples.change(change_sample_questions,dropdown_samples,samples)
635
 
636
- textbox.submit(find_papers,[textbox,after], [papers_html,citations_network,papers_summary])
637
- examples_hidden.change(find_papers,[examples_hidden,after], [papers_html,citations_network,papers_summary])
638
 
639
  btn_summary.click(toggle_summary_visibility, outputs=summary_popup)
640
  btn_relevant_papers.click(toggle_relevant_visibility, outputs=relevant_popup)
 
120
  agent = make_graph_agent(llm=llm, vectorstore_ipcc=vectorstore, vectorstore_graphs=vectorstore_graphs, reranker=reranker)
121
 
122
 
123
+ async def chat(query, history, audience, sources, reports, relevant_content_sources):
124
  """taking a query and a message history, use a pipeline (reformulation, retriever, answering) to yield a tuple of:
125
  (messages in gradio format, messages in langchain format, source documents)"""
126
 
 
136
  if reports is None or len(reports) == 0:
137
  reports = []
138
 
139
+ inputs = {"user_input": query,"audience": audience_prompt,"sources_input":sources, "relevant_content_sources" : relevant_content_sources}
140
  result = agent.astream_events(inputs,version = "v1")
141
 
142
 
 
167
  if event["event"] == "on_chain_end" and event["name"] == "retrieve_documents" :# when documents are retrieved
168
  docs, docs_html, history, used_documents, related_contents = handle_retrieved_documents(event, history, used_documents)
169
 
170
+ elif event["event"] == "on_chain_end" and node == "categorize_intent" and event["name"] == "_write": # when the query is transformed
171
+
172
+ intent = event["data"]["output"]["intent"]
173
+ if "language" in event["data"]["output"]:
174
+ output_language = event["data"]["output"]["language"]
175
+ else :
176
+ output_language = "English"
177
+ history[-1].content = f"Language identified : {output_language} \n Intent identified : {intent}"
178
+
179
+
180
  elif event["name"] in steps_display.keys() and event["event"] == "on_chain_start": #display steps
181
  event_description, display_output = steps_display[node]
182
  if not hasattr(history[-1], 'metadata') or history[-1].metadata["title"] != event_description: # if a new step begins
 
269
  papers_cols_widths = list(papers_cols_widths.values())
270
 
271
 
272
+ async def find_papers(query,after, relevant_content_sources):
273
+ if "OpenAlex" in relevant_content_sources:
274
+ summary = ""
275
+ keywords = generate_keywords(query)
276
+ df_works = oa.search(keywords,after = after)
277
+ df_works = df_works.dropna(subset=["abstract"])
278
+ df_works = oa.rerank(query,df_works,reranker)
279
+ df_works = df_works.sort_values("rerank_score",ascending=False)
280
+ docs_html = []
281
+ for i in range(10):
282
+ docs_html.append(make_html_df(df_works, i))
283
+ docs_html = "".join(docs_html)
284
+ print(docs_html)
285
+ G = oa.make_network(df_works)
286
 
287
+ height = "750px"
288
+ network = oa.show_network(G,color_by = "rerank_score",notebook=False,height = height)
289
+ network_html = network.generate_html()
290
 
291
+ network_html = network_html.replace("'", "\"")
292
+ css_to_inject = "<style>#mynetwork { border: none !important; } .card { border: none !important; }</style>"
293
+ network_html = network_html + css_to_inject
294
 
295
+
296
+ network_html = f"""<iframe style="width: 100%; height: {height};margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
297
+ display-capture; encrypted-media;" sandbox="allow-modals allow-forms
298
+ allow-scripts allow-same-origin allow-popups
299
+ allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
300
+ allowpaymentrequest="" frameborder="0" srcdoc='{network_html}'></iframe>"""
301
 
302
 
303
+ docs = df_works["content"].head(10).tolist()
304
 
305
+ df_works = df_works.reset_index(drop = True).reset_index().rename(columns = {"index":"doc"})
306
+ df_works["doc"] = df_works["doc"] + 1
307
+ df_works = df_works[papers_cols]
308
 
309
+ yield docs_html, network_html, summary
310
 
311
+ chain = make_rag_papers_chain(llm)
312
+ result = chain.astream_log({"question": query,"docs": docs,"language":"English"})
313
+ path_answer = "/logs/StrOutputParser/streamed_output/-"
314
 
315
+ async for op in result:
316
 
317
+ op = op.ops[0]
318
 
319
+ if op['path'] == path_answer: # reforulated question
320
+ new_token = op['value'] # str
321
+ summary += new_token
322
+ else:
323
+ continue
324
+ yield docs_html, network_html, summary
325
 
326
 
327
 
 
482
  value=["IPCC"],
483
  interactive=True,
484
  )
485
+ dropdown_external_sources = gr.CheckboxGroup(
486
+ ["IPCC figures","OpenAlex", "OurWorldInData"],
487
+ label="Select database to search for relevant content",
488
+ value=["IPCC figures"],
489
+ interactive=True,
490
+ )
491
+
492
  dropdown_reports = gr.Dropdown(
493
  POSSIBLE_REPORTS,
494
  label="Or select specific reports",
 
503
  value="Experts",
504
  interactive=True,
505
  )
506
+
507
 
508
+ output_query = gr.Textbox(label="Query used for retrieval",show_label = True,elem_id = "reformulated-query",lines = 2,interactive = False, visible= False)
509
+ output_language = gr.Textbox(label="Language",show_label = True,elem_id = "language",lines = 1,interactive = False, visible= False)
510
 
511
 
512
 
 
619
 
620
  (textbox
621
  .submit(start_chat, [textbox,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_textbox")
622
+ .then(chat, [textbox,chatbot,dropdown_audience, dropdown_sources,dropdown_reports, dropdown_external_sources] ,[chatbot,sources_textbox,output_query,output_language, sources_raw, current_graphs],concurrency_limit = 8,api_name = "chat_textbox")
623
  .then(finish_chat, None, [textbox],api_name = "finish_chat_textbox")
624
  # .then(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_sources, tab_figures, tab_recommended_content, tab_papers] )
625
  )
626
 
627
  (examples_hidden
628
  .change(start_chat, [examples_hidden,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_examples")
629
+ .then(chat, [examples_hidden,chatbot,dropdown_audience, dropdown_sources,dropdown_reports, dropdown_external_sources] ,[chatbot,sources_textbox,output_query,output_language, sources_raw, current_graphs],concurrency_limit = 8,api_name = "chat_textbox")
630
  .then(finish_chat, None, [textbox],api_name = "finish_chat_examples")
631
  # .then(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_sources, tab_figures, tab_recommended_content, tab_papers] )
632
  )
 
649
 
650
  dropdown_samples.change(change_sample_questions,dropdown_samples,samples)
651
 
652
+ textbox.submit(find_papers,[textbox,after, dropdown_external_sources], [papers_html,citations_network,papers_summary])
653
+ examples_hidden.change(find_papers,[examples_hidden,after,dropdown_external_sources], [papers_html,citations_network,papers_summary])
654
 
655
  btn_summary.click(toggle_summary_visibility, outputs=summary_popup)
656
  btn_relevant_papers.click(toggle_relevant_visibility, outputs=relevant_popup)
climateqa/engine/chains/graph_retriever.py CHANGED
@@ -3,7 +3,7 @@ import os
3
  from contextlib import contextmanager
4
 
5
  from ..reranker import rerank_docs
6
- from ..graph_retriever import GraphRetriever
7
  from ...utils import remove_duplicates_keep_highest_score
8
 
9
 
@@ -46,82 +46,83 @@ def suppress_output():
46
 
47
  def make_graph_retriever_node(vectorstore, reranker, rerank_by_question=True, k_final=15, k_before_reranking=100):
48
 
49
- def retrieve_graphs(state):
50
- print("---- Retrieving graphs ----")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
- POSSIBLE_SOURCES = ["IEA", "OWID"]
53
- questions = state["remaining_questions"] if state["remaining_questions"] is not None and state["remaining_questions"]!=[] else [state["query"]]
54
- # sources_input = state["sources_input"]
55
- sources_input = ["auto"]
56
-
57
- auto_mode = "auto" in sources_input
58
-
59
- # There are several options to get the final top k
60
- # Option 1 - Get 100 documents by question and rerank by question
61
- # Option 2 - Get 100/n documents by question and rerank the total
62
- if rerank_by_question:
63
- k_by_question = divide_into_parts(k_final,len(questions))
64
 
65
- docs = []
66
 
67
- for i,q in enumerate(questions):
68
-
69
- question = q["question"] if isinstance(q, dict) else q
 
 
 
 
 
 
 
70
 
71
- print(f"Subquestion {i}: {question}")
 
 
 
 
 
 
 
 
72
 
73
- # If auto mode, we use all sources
74
- if auto_mode:
75
- sources = POSSIBLE_SOURCES
76
- # Otherwise, we use the config
77
  else:
78
- sources = sources_input
79
-
80
- if any([x in POSSIBLE_SOURCES for x in sources]):
81
-
82
- sources = [x for x in sources if x in POSSIBLE_SOURCES]
83
-
84
- # Search the document store using the retriever
85
- retriever = GraphRetriever(
86
- vectorstore = vectorstore,
87
- sources = sources,
88
- k_total = k_before_reranking,
89
- threshold = 0.5,
90
- )
91
- docs_question = retriever.get_relevant_documents(question)
92
-
93
- # Rerank
94
- if reranker is not None and docs_question!=[]:
95
- with suppress_output():
96
- docs_question = rerank_docs(reranker,docs_question,question)
97
- else:
98
- # Add a default reranking score
99
- for doc in docs_question:
100
- doc.metadata["reranking_score"] = doc.metadata["similarity_score"]
101
-
102
- # If rerank by question we select the top documents for each question
103
- if rerank_by_question:
104
- docs_question = docs_question[:k_by_question[i]]
105
-
106
- # Add sources used in the metadata
107
  for doc in docs_question:
108
- doc.metadata["sources_used"] = sources
109
 
110
- print(f"{len(docs_question)} graphs retrieved for subquestion {i + 1}: {docs_question}")
 
 
 
 
 
 
 
 
111
 
112
- docs.extend(docs_question)
113
 
114
- else:
115
- print(f"There are no graphs which match the sources filtered on. Sources filtered on: {sources}. Sources available: {POSSIBLE_SOURCES}.")
116
-
117
- # Remove duplicates and keep the duplicate document with the highest reranking score
118
- docs = remove_duplicates_keep_highest_score(docs)
119
 
120
- # Sorting the list in descending order by rerank_score
121
- # Then select the top k
122
- docs = sorted(docs, key=lambda x: x.metadata["reranking_score"], reverse=True)
123
- docs = docs[:k_final]
124
 
125
- return {"recommended_content": docs}
126
 
127
- return retrieve_graphs
 
3
  from contextlib import contextmanager
4
 
5
  from ..reranker import rerank_docs
6
+ from ..graph_retriever import retrieve_graphs # GraphRetriever
7
  from ...utils import remove_duplicates_keep_highest_score
8
 
9
 
 
46
 
47
  def make_graph_retriever_node(vectorstore, reranker, rerank_by_question=True, k_final=15, k_before_reranking=100):
48
 
49
+ async def node_retrieve_graphs(state):
50
+ print("---- Retrieving graphs ----")
51
+
52
+ POSSIBLE_SOURCES = ["IEA", "OWID"]
53
+ questions = state["remaining_questions"] if state["remaining_questions"] is not None and state["remaining_questions"]!=[] else [state["query"]]
54
+ # sources_input = state["sources_input"]
55
+ sources_input = ["auto"]
56
+
57
+ auto_mode = "auto" in sources_input
58
+
59
+ # There are several options to get the final top k
60
+ # Option 1 - Get 100 documents by question and rerank by question
61
+ # Option 2 - Get 100/n documents by question and rerank the total
62
+ if rerank_by_question:
63
+ k_by_question = divide_into_parts(k_final,len(questions))
64
+
65
+ docs = []
66
+
67
+ for i,q in enumerate(questions):
68
 
69
+ question = q["question"] if isinstance(q, dict) else q
 
 
 
 
 
 
 
 
 
 
 
70
 
71
+ print(f"Subquestion {i}: {question}")
72
 
73
+ # If auto mode, we use all sources
74
+ if auto_mode:
75
+ sources = POSSIBLE_SOURCES
76
+ # Otherwise, we use the config
77
+ else:
78
+ sources = sources_input
79
+
80
+ if any([x in POSSIBLE_SOURCES for x in sources]):
81
+
82
+ sources = [x for x in sources if x in POSSIBLE_SOURCES]
83
 
84
+ # Search the document store using the retriever
85
+ docs_question = await retrieve_graphs(
86
+ query = question,
87
+ vectorstore = vectorstore,
88
+ sources = sources,
89
+ k_total = k_before_reranking,
90
+ threshold = 0.5,
91
+ )
92
+ # docs_question = retriever.get_relevant_documents(question)
93
 
94
+ # Rerank
95
+ if reranker is not None and docs_question!=[]:
96
+ with suppress_output():
97
+ docs_question = rerank_docs(reranker,docs_question,question)
98
  else:
99
+ # Add a default reranking score
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
  for doc in docs_question:
101
+ doc.metadata["reranking_score"] = doc.metadata["similarity_score"]
102
 
103
+ # If rerank by question we select the top documents for each question
104
+ if rerank_by_question:
105
+ docs_question = docs_question[:k_by_question[i]]
106
+
107
+ # Add sources used in the metadata
108
+ for doc in docs_question:
109
+ doc.metadata["sources_used"] = sources
110
+
111
+ print(f"{len(docs_question)} graphs retrieved for subquestion {i + 1}: {docs_question}")
112
 
113
+ docs.extend(docs_question)
114
 
115
+ else:
116
+ print(f"There are no graphs which match the sources filtered on. Sources filtered on: {sources}. Sources available: {POSSIBLE_SOURCES}.")
117
+
118
+ # Remove duplicates and keep the duplicate document with the highest reranking score
119
+ docs = remove_duplicates_keep_highest_score(docs)
120
 
121
+ # Sorting the list in descending order by rerank_score
122
+ # Then select the top k
123
+ docs = sorted(docs, key=lambda x: x.metadata["reranking_score"], reverse=True)
124
+ docs = docs[:k_final]
125
 
126
+ return {"recommended_content": docs}
127
 
128
+ return node_retrieve_graphs
climateqa/engine/chains/retrieve_documents.py CHANGED
@@ -8,10 +8,13 @@ from langchain_core.runnables import RunnableParallel, RunnablePassthrough
8
  from langchain_core.runnables import RunnableLambda
9
 
10
  from ..reranker import rerank_docs
11
- from ...knowledge.retriever import ClimateQARetriever
12
  from ...knowledge.openalex import OpenAlexRetriever
13
  from .keywords_extraction import make_keywords_extraction_chain
14
  from ..utils import log_event
 
 
 
15
 
16
 
17
 
@@ -76,10 +79,110 @@ def _get_k_summary_by_question(n_questions):
76
  else:
77
  return 1
78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
  # The chain callback is not necessary, but it propagates the langchain callbacks to the astream_events logger to display intermediate results
81
  # @chain
82
- async def retrieve_documents(state,config, vectorstore,reranker,llm,rerank_by_question=True, k_final=15, k_before_reranking=100, k_summary=5):
83
  print("---- Retrieve documents ----")
84
 
85
  # Get the documents from the state
@@ -93,12 +196,15 @@ async def retrieve_documents(state,config, vectorstore,reranker,llm,rerank_by_qu
93
  else:
94
  related_content = []
95
 
 
 
96
  # Get the current question
97
  current_question = state["remaining_questions"][0]
98
  remaining_questions = state["remaining_questions"][1:]
99
 
100
  k_by_question = k_final // state["n_questions"]
101
  k_summary_by_question = _get_k_summary_by_question(state["n_questions"])
 
102
 
103
  sources = current_question["sources"]
104
  question = current_question["question"]
@@ -108,40 +214,19 @@ async def retrieve_documents(state,config, vectorstore,reranker,llm,rerank_by_qu
108
  await log_event({"question":question,"sources":sources,"index":index},"log_retriever",config)
109
 
110
 
111
- if index == "Vector":
112
- # Search the document store using the retriever
113
- # Configure high top k for further reranking step
114
- retriever = ClimateQARetriever(
115
  vectorstore=vectorstore,
 
116
  sources = sources,
117
  min_size = 200,
118
  k_summary = k_summary_by_question,
119
  k_total = k_before_reranking,
 
120
  threshold = 0.5,
121
  )
122
- docs_question_dict = await retriever.ainvoke(question,config)
123
-
124
-
125
- # elif index == "OpenAlex":
126
- # # keyword extraction
127
- # keywords_extraction = make_keywords_extraction_chain(llm)
128
-
129
- # keywords = keywords_extraction.invoke(question)["keywords"]
130
- # openalex_query = " AND ".join(keywords)
131
-
132
- # print(f"... OpenAlex query: {openalex_query}")
133
 
134
- # retriever_openalex = OpenAlexRetriever(
135
- # min_year = state.get("min_year",1960),
136
- # max_year = state.get("max_year",None),
137
- # k = k_before_reranking
138
- # )
139
- # docs_question = await retriever_openalex.ainvoke(openalex_query,config)
140
-
141
- # else:
142
- # raise Exception(f"Index {index} not found in the routing index")
143
-
144
-
145
 
146
  # Rerank
147
  if reranker is not None:
@@ -161,7 +246,7 @@ async def retrieve_documents(state,config, vectorstore,reranker,llm,rerank_by_qu
161
 
162
  docs_question = docs_question_summary_reranked + docs_question_fulltext_reranked
163
  docs_question = docs_question[:k_by_question]
164
- images_question = docs_question_images_reranked[:k_by_question]
165
 
166
  if reranker is not None and rerank_by_question:
167
  docs_question = sorted(docs_question, key=lambda x: x.metadata["reranking_score"], reverse=True)
@@ -173,7 +258,7 @@ async def retrieve_documents(state,config, vectorstore,reranker,llm,rerank_by_qu
173
  # Add to the list of docs
174
  docs.extend(docs_question)
175
  related_content.extend(images_question)
176
-
177
  new_state = {"documents":docs, "related_contents": related_content,"remaining_questions":remaining_questions}
178
  return new_state
179
 
 
8
  from langchain_core.runnables import RunnableLambda
9
 
10
  from ..reranker import rerank_docs
11
+ # from ...knowledge.retriever import ClimateQARetriever
12
  from ...knowledge.openalex import OpenAlexRetriever
13
  from .keywords_extraction import make_keywords_extraction_chain
14
  from ..utils import log_event
15
+ from langchain_core.vectorstores import VectorStore
16
+ from typing import List
17
+ from langchain_core.documents.base import Document
18
 
19
 
20
 
 
79
  else:
80
  return 1
81
 
82
+ def _get_k_images_by_question(n_questions):
83
+ if n_questions == 0:
84
+ return 0
85
+ elif n_questions == 1:
86
+ return 5
87
+ elif n_questions == 2:
88
+ return 3
89
+ elif n_questions == 3:
90
+ return 2
91
+ else:
92
+ return 1
93
+
94
+ def _add_metadata_and_score(docs: List) -> Document:
95
+ # Add score to metadata
96
+ docs_with_metadata = []
97
+ for i,(doc,score) in enumerate(docs):
98
+ doc.page_content = doc.page_content.replace("\r\n"," ")
99
+ doc.metadata["similarity_score"] = score
100
+ doc.metadata["content"] = doc.page_content
101
+ doc.metadata["page_number"] = int(doc.metadata["page_number"]) + 1
102
+ # doc.page_content = f"""Doc {i+1} - {doc.metadata['short_name']}: {doc.page_content}"""
103
+ docs_with_metadata.append(doc)
104
+ return docs_with_metadata
105
+
106
+ async def get_IPCC_relevant_documents(
107
+ query: str,
108
+ vectorstore:VectorStore,
109
+ sources:list = ["IPCC","IPBES","IPOS"],
110
+ search_figures:bool = False,
111
+ reports:list = [],
112
+ threshold:float = 0.6,
113
+ k_summary:int = 3,
114
+ k_total:int = 10,
115
+ k_images: int = 5,
116
+ namespace:str = "vectors",
117
+ min_size:int = 200,
118
+ ) :
119
+
120
+ # Check if all elements in the list are either IPCC or IPBES
121
+ assert isinstance(sources,list)
122
+ assert sources
123
+ assert all([x in ["IPCC","IPBES","IPOS"] for x in sources])
124
+ assert k_total > k_summary, "k_total should be greater than k_summary"
125
+
126
+ # Prepare base search kwargs
127
+ filters = {}
128
+
129
+ if len(reports) > 0:
130
+ filters["short_name"] = {"$in":reports}
131
+ else:
132
+ filters["source"] = { "$in": sources}
133
+
134
+ # INIT
135
+ docs_summaries = []
136
+ docs_full = []
137
+ docs_images = []
138
+
139
+ # Search for k_summary documents in the summaries dataset
140
+ filters_summaries = {
141
+ **filters,
142
+ "chunk_type":"text",
143
+ "report_type": { "$in":["SPM"]},
144
+ }
145
+
146
+ docs_summaries = vectorstore.similarity_search_with_score(query=query,filter = filters_summaries,k = k_summary)
147
+ docs_summaries = [x for x in docs_summaries if x[1] > threshold]
148
+ # docs_summaries = []
149
+
150
+ # Search for k_total - k_summary documents in the full reports dataset
151
+ filters_full = {
152
+ **filters,
153
+ "chunk_type":"text",
154
+ "report_type": { "$nin":["SPM"]},
155
+ }
156
+ k_full = k_total - len(docs_summaries)
157
+ docs_full = vectorstore.similarity_search_with_score(query=query,filter = filters_full,k = k_full)
158
+
159
+ if search_figures:
160
+ # Images
161
+ filters_image = {
162
+ **filters,
163
+ "chunk_type":"image"
164
+ }
165
+ docs_images = vectorstore.similarity_search_with_score(query=query,filter = filters_image,k = k_images)
166
+
167
+
168
+ docs_summaries, docs_full, docs_images = _add_metadata_and_score(docs_summaries), _add_metadata_and_score(docs_full), _add_metadata_and_score(docs_images)
169
+
170
+ # Filter if length are below threshold
171
+ docs_summaries = [x for x in docs_summaries if len(x.page_content) > min_size]
172
+ docs_full = [x for x in docs_full if len(x.page_content) > min_size]
173
+
174
+
175
+ return {
176
+ "docs_summaries" : docs_summaries,
177
+ "docs_full" : docs_full,
178
+ "docs_images" : docs_images,
179
+ }
180
+
181
+
182
 
183
  # The chain callback is not necessary, but it propagates the langchain callbacks to the astream_events logger to display intermediate results
184
  # @chain
185
+ async def retrieve_documents(state,config, vectorstore,reranker,llm,rerank_by_question=True, k_final=15, k_before_reranking=100, k_summary=5, k_images=5):
186
  print("---- Retrieve documents ----")
187
 
188
  # Get the documents from the state
 
196
  else:
197
  related_content = []
198
 
199
+ search_figures = "IPCC figures" in state["relevant_content_sources"]
200
+
201
  # Get the current question
202
  current_question = state["remaining_questions"][0]
203
  remaining_questions = state["remaining_questions"][1:]
204
 
205
  k_by_question = k_final // state["n_questions"]
206
  k_summary_by_question = _get_k_summary_by_question(state["n_questions"])
207
+ k_images_by_question = _get_k_images_by_question(state["n_questions"])
208
 
209
  sources = current_question["sources"]
210
  question = current_question["question"]
 
214
  await log_event({"question":question,"sources":sources,"index":index},"log_retriever",config)
215
 
216
 
217
+ if index == "Vector": # always true for now
218
+ docs_question_dict = await get_IPCC_relevant_documents(
219
+ query = question,
 
220
  vectorstore=vectorstore,
221
+ search_figures = search_figures,
222
  sources = sources,
223
  min_size = 200,
224
  k_summary = k_summary_by_question,
225
  k_total = k_before_reranking,
226
+ k_images = k_images_by_question,
227
  threshold = 0.5,
228
  )
 
 
 
 
 
 
 
 
 
 
 
229
 
 
 
 
 
 
 
 
 
 
 
 
230
 
231
  # Rerank
232
  if reranker is not None:
 
246
 
247
  docs_question = docs_question_summary_reranked + docs_question_fulltext_reranked
248
  docs_question = docs_question[:k_by_question]
249
+ images_question = docs_question_images_reranked[:k_images]
250
 
251
  if reranker is not None and rerank_by_question:
252
  docs_question = sorted(docs_question, key=lambda x: x.metadata["reranking_score"], reverse=True)
 
258
  # Add to the list of docs
259
  docs.extend(docs_question)
260
  related_content.extend(images_question)
261
+ # related_content=[]
262
  new_state = {"documents":docs, "related_contents": related_content,"remaining_questions":remaining_questions}
263
  return new_state
264
 
climateqa/engine/graph.py CHANGED
@@ -36,6 +36,7 @@ class GraphState(TypedDict):
36
  answer: str
37
  audience: str = "experts"
38
  sources_input: List[str] = ["IPCC","IPBES"]
 
39
  sources_auto: bool = True
40
  min_year: int = 1960
41
  max_year: int = None
@@ -153,20 +154,28 @@ def make_graph_agent(llm, vectorstore_ipcc, vectorstore_graphs, reranker, thresh
153
  lambda x : route_based_on_relevant_docs(x,threshold_docs=threshold_docs),
154
  make_id_dict(["answer_rag","answer_rag_no_docs"])
155
  )
 
 
 
 
 
156
 
157
  # Define the edges
158
  # workflow.add_edge("set_defaults", "categorize_intent")
159
  workflow.add_edge("translate_query", "transform_query")
160
- workflow.add_edge("transform_query", "retrieve_graphs")
 
 
161
  # workflow.add_edge("retrieve_graphs", "answer_rag_graph")
162
- workflow.add_edge("retrieve_graphs", "retrieve_documents")
 
163
  # workflow.add_edge("answer_rag_graph", "retrieve_documents")
164
  workflow.add_edge("answer_rag", END)
165
  workflow.add_edge("answer_rag_no_docs", END)
166
  workflow.add_edge("answer_chitchat", "chitchat_categorize_intent")
167
  # workflow.add_edge("answer_chitchat", END)
168
  # workflow.add_edge("answer_ai_impact", END)
169
- workflow.add_edge("retrieve_graphs_chitchat", END)
170
  # workflow.add_edge("answer_ai_impact", "translate_query_ai")
171
  # workflow.add_edge("translate_query_ai", "transform_query_ai")
172
  # workflow.add_edge("transform_query_ai", "retrieve_graphs_ai")
 
36
  answer: str
37
  audience: str = "experts"
38
  sources_input: List[str] = ["IPCC","IPBES"]
39
+ relevant_content_sources: List[str] = ["IPCC figures"]
40
  sources_auto: bool = True
41
  min_year: int = 1960
42
  max_year: int = None
 
154
  lambda x : route_based_on_relevant_docs(x,threshold_docs=threshold_docs),
155
  make_id_dict(["answer_rag","answer_rag_no_docs"])
156
  )
157
+ workflow.add_conditional_edges(
158
+ "transform_query",
159
+ lambda state : "retrieve_graphs" if "OurWorldInData" in state["relevant_content_sources"] else END,
160
+ make_id_dict(["retrieve_graphs", END])
161
+ )
162
 
163
  # Define the edges
164
  # workflow.add_edge("set_defaults", "categorize_intent")
165
  workflow.add_edge("translate_query", "transform_query")
166
+ # workflow.add_edge("transform_query", "retrieve_graphs")
167
+ workflow.add_edge("transform_query", "retrieve_documents")
168
+
169
  # workflow.add_edge("retrieve_graphs", "answer_rag_graph")
170
+ workflow.add_edge("retrieve_graphs", END)
171
+ # workflow.add_edge("retrieve_graphs", "retrieve_documents")
172
  # workflow.add_edge("answer_rag_graph", "retrieve_documents")
173
  workflow.add_edge("answer_rag", END)
174
  workflow.add_edge("answer_rag_no_docs", END)
175
  workflow.add_edge("answer_chitchat", "chitchat_categorize_intent")
176
  # workflow.add_edge("answer_chitchat", END)
177
  # workflow.add_edge("answer_ai_impact", END)
178
+ # workflow.add_edge("retrieve_graphs_chitchat", END)
179
  # workflow.add_edge("answer_ai_impact", "translate_query_ai")
180
  # workflow.add_edge("translate_query_ai", "transform_query_ai")
181
  # workflow.add_edge("transform_query_ai", "retrieve_graphs_ai")
climateqa/engine/graph_retriever.py CHANGED
@@ -5,30 +5,70 @@ from langchain_core.callbacks.manager import CallbackManagerForRetrieverRun
5
 
6
  from typing import List
7
 
8
- class GraphRetriever(BaseRetriever):
9
- vectorstore:VectorStore
10
- sources:list = ["OWID"] # plus tard ajouter OurWorldInData # faudra integrate avec l'autre retriever
11
- threshold:float = 0.5
12
- k_total:int = 10
13
 
14
- def _get_relevant_documents(
15
- self, query: str, *, run_manager: CallbackManagerForRetrieverRun
16
- ) -> List[Document]:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  # Check if all elements in the list are IEA or OWID
19
- assert isinstance(self.sources,list)
20
- assert self.sources
21
- assert any([x in ["OWID"] for x in self.sources])
22
 
23
  # Prepare base search kwargs
24
  filters = {}
25
 
26
- filters["source"] = {"$in": self.sources}
27
 
28
- docs = self.vectorstore.similarity_search_with_score(query=query, filter=filters, k=self.k_total)
29
 
30
  # Filter if scores are below threshold
31
- docs = [x for x in docs if x[1] > self.threshold]
32
 
33
  # Remove duplicate documents
34
  unique_docs = []
 
5
 
6
  from typing import List
7
 
8
+ # class GraphRetriever(BaseRetriever):
9
+ # vectorstore:VectorStore
10
+ # sources:list = ["OWID"] # plus tard ajouter OurWorldInData # faudra integrate avec l'autre retriever
11
+ # threshold:float = 0.5
12
+ # k_total:int = 10
13
 
14
+ # def _get_relevant_documents(
15
+ # self, query: str, *, run_manager: CallbackManagerForRetrieverRun
16
+ # ) -> List[Document]:
17
+
18
+ # # Check if all elements in the list are IEA or OWID
19
+ # assert isinstance(self.sources,list)
20
+ # assert self.sources
21
+ # assert any([x in ["OWID"] for x in self.sources])
22
+
23
+ # # Prepare base search kwargs
24
+ # filters = {}
25
+
26
+ # filters["source"] = {"$in": self.sources}
27
+
28
+ # docs = self.vectorstore.similarity_search_with_score(query=query, filter=filters, k=self.k_total)
29
+
30
+ # # Filter if scores are below threshold
31
+ # docs = [x for x in docs if x[1] > self.threshold]
32
+
33
+ # # Remove duplicate documents
34
+ # unique_docs = []
35
+ # seen_docs = []
36
+ # for i, doc in enumerate(docs):
37
+ # if doc[0].page_content not in seen_docs:
38
+ # unique_docs.append(doc)
39
+ # seen_docs.append(doc[0].page_content)
40
+
41
+ # # Add score to metadata
42
+ # results = []
43
+ # for i,(doc,score) in enumerate(unique_docs):
44
+ # doc.metadata["similarity_score"] = score
45
+ # doc.metadata["content"] = doc.page_content
46
+ # results.append(doc)
47
+
48
+ # return results
49
+
50
+ async def retrieve_graphs(
51
+ query: str,
52
+ vectorstore:VectorStore,
53
+ sources:list = ["OWID"], # plus tard ajouter OurWorldInData # faudra integrate avec l'autre retriever
54
+ threshold:float = 0.5,
55
+ k_total:int = 10,
56
+ )-> List[Document]:
57
 
58
  # Check if all elements in the list are IEA or OWID
59
+ assert isinstance(sources,list)
60
+ assert sources
61
+ assert any([x in ["OWID"] for x in sources])
62
 
63
  # Prepare base search kwargs
64
  filters = {}
65
 
66
+ filters["source"] = {"$in": sources}
67
 
68
+ docs = vectorstore.similarity_search_with_score(query=query, filter=filters, k=k_total)
69
 
70
  # Filter if scores are below threshold
71
+ docs = [x for x in docs if x[1] > threshold]
72
 
73
  # Remove duplicate documents
74
  unique_docs = []
climateqa/engine/reranker.py CHANGED
@@ -30,6 +30,8 @@ def get_reranker(model = "nano", cohere_api_key = None):
30
 
31
 
32
  def rerank_docs(reranker,docs,query):
 
 
33
 
34
  # Get a list of texts from langchain docs
35
  input_docs = [x.page_content for x in docs]
 
30
 
31
 
32
  def rerank_docs(reranker,docs,query):
33
+ if docs == []:
34
+ return []
35
 
36
  # Get a list of texts from langchain docs
37
  input_docs = [x.page_content for x in docs]
climateqa/knowledge/retriever.py CHANGED
@@ -1,101 +1,102 @@
1
- # https://github.com/langchain-ai/langchain/issues/8623
2
-
3
- import pandas as pd
4
-
5
- from langchain_core.retrievers import BaseRetriever
6
- from langchain_core.vectorstores import VectorStoreRetriever
7
- from langchain_core.documents.base import Document
8
- from langchain_core.vectorstores import VectorStore
9
- from langchain_core.callbacks.manager import CallbackManagerForRetrieverRun
10
-
11
- from typing import List
12
- from pydantic import Field
13
-
14
- def _add_metadata_and_score(docs: List) -> Document:
15
- # Add score to metadata
16
- docs_with_metadata = []
17
- for i,(doc,score) in enumerate(docs):
18
- doc.page_content = doc.page_content.replace("\r\n"," ")
19
- doc.metadata["similarity_score"] = score
20
- doc.metadata["content"] = doc.page_content
21
- doc.metadata["page_number"] = int(doc.metadata["page_number"]) + 1
22
- # doc.page_content = f"""Doc {i+1} - {doc.metadata['short_name']}: {doc.page_content}"""
23
- docs_with_metadata.append(doc)
24
- return docs_with_metadata
25
-
26
- class ClimateQARetriever(BaseRetriever):
27
- vectorstore:VectorStore
28
- sources:list = ["IPCC","IPBES","IPOS"]
29
- reports:list = []
30
- threshold:float = 0.6
31
- k_summary:int = 3
32
- k_total:int = 10
33
- namespace:str = "vectors",
34
- min_size:int = 200,
35
 
36
 
37
 
38
- def _get_relevant_documents(
39
- self, query: str, *, run_manager: CallbackManagerForRetrieverRun
40
- ) -> List[Document]:
41
-
42
- # Check if all elements in the list are either IPCC or IPBES
43
- assert isinstance(self.sources,list)
44
- assert self.sources
45
- assert all([x in ["IPCC","IPBES","IPOS"] for x in self.sources])
46
- assert self.k_total > self.k_summary, "k_total should be greater than k_summary"
47
-
48
- # Prepare base search kwargs
49
- filters = {}
50
-
51
- if len(self.reports) > 0:
52
- filters["short_name"] = {"$in":self.reports}
53
- else:
54
- filters["source"] = { "$in":self.sources}
55
-
56
- # Search for k_summary documents in the summaries dataset
57
- filters_summaries = {
58
- **filters,
59
- "chunk_type":"text",
60
- "report_type": { "$in":["SPM"]},
61
- }
62
-
63
- docs_summaries = self.vectorstore.similarity_search_with_score(query=query,filter = filters_summaries,k = self.k_summary)
64
- docs_summaries = [x for x in docs_summaries if x[1] > self.threshold]
65
-
66
- # Search for k_total - k_summary documents in the full reports dataset
67
- filters_full = {
68
- **filters,
69
- "chunk_type":"text",
70
- "report_type": { "$nin":["SPM"]},
71
- }
72
- k_full = self.k_total - len(docs_summaries)
73
- docs_full = self.vectorstore.similarity_search_with_score(query=query,filter = filters_full,k = k_full)
 
74
 
75
- # Images
76
- filters_image = {
77
- **filters,
78
- "chunk_type":"image"
79
- }
80
- docs_images = self.vectorstore.similarity_search_with_score(query=query,filter = filters_image,k = k_full)
81
-
82
- # Concatenate documents
83
- docs = docs_summaries + docs_full + docs_images
84
-
85
- # Filter if scores are below threshold
86
- docs = [x for x in docs if len(x[0].page_content) > self.min_size]
87
- # docs = [x for x in docs if x[1] > self.threshold]
88
-
89
- docs_summaries, docs_full, docs_images = _add_metadata_and_score(docs_summaries), _add_metadata_and_score(docs_full), _add_metadata_and_score(docs_images)
90
 
91
- # Filter if length are below threshold
92
- docs_summaries = [x for x in docs_summaries if len(x.page_content) > self.min_size]
93
- docs_full = [x for x in docs_full if len(x.page_content) > self.min_size]
94
-
95
- return {
96
- "docs_summaries" : docs_summaries,
97
- "docs_full" : docs_full,
98
- "docs_images" : docs_images
99
- }
100
 
 
 
101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # # https://github.com/langchain-ai/langchain/issues/8623
2
+
3
+ # import pandas as pd
4
+
5
+ # from langchain_core.retrievers import BaseRetriever
6
+ # from langchain_core.vectorstores import VectorStoreRetriever
7
+ # from langchain_core.documents.base import Document
8
+ # from langchain_core.vectorstores import VectorStore
9
+ # from langchain_core.callbacks.manager import CallbackManagerForRetrieverRun
10
+
11
+ # from typing import List
12
+ # from pydantic import Field
13
+
14
+ # def _add_metadata_and_score(docs: List) -> Document:
15
+ # # Add score to metadata
16
+ # docs_with_metadata = []
17
+ # for i,(doc,score) in enumerate(docs):
18
+ # doc.page_content = doc.page_content.replace("\r\n"," ")
19
+ # doc.metadata["similarity_score"] = score
20
+ # doc.metadata["content"] = doc.page_content
21
+ # doc.metadata["page_number"] = int(doc.metadata["page_number"]) + 1
22
+ # # doc.page_content = f"""Doc {i+1} - {doc.metadata['short_name']}: {doc.page_content}"""
23
+ # docs_with_metadata.append(doc)
24
+ # return docs_with_metadata
25
+
26
+ # class ClimateQARetriever(BaseRetriever):
27
+ # vectorstore:VectorStore
28
+ # sources:list = ["IPCC","IPBES","IPOS"]
29
+ # reports:list = []
30
+ # threshold:float = 0.6
31
+ # k_summary:int = 3
32
+ # k_total:int = 10
33
+ # namespace:str = "vectors",
34
+ # min_size:int = 200,
35
 
36
 
37
 
38
+ # def _get_relevant_documents(
39
+ # self, query: str, *, run_manager: CallbackManagerForRetrieverRun
40
+ # ) -> List[Document]:
41
+
42
+ # # Check if all elements in the list are either IPCC or IPBES
43
+ # assert isinstance(self.sources,list)
44
+ # assert self.sources
45
+ # assert all([x in ["IPCC","IPBES","IPOS"] for x in self.sources])
46
+ # assert self.k_total > self.k_summary, "k_total should be greater than k_summary"
47
+
48
+ # # Prepare base search kwargs
49
+ # filters = {}
50
+
51
+ # if len(self.reports) > 0:
52
+ # filters["short_name"] = {"$in":self.reports}
53
+ # else:
54
+ # filters["source"] = { "$in":self.sources}
55
+
56
+ # # Search for k_summary documents in the summaries dataset
57
+ # filters_summaries = {
58
+ # **filters,
59
+ # "chunk_type":"text",
60
+ # "report_type": { "$in":["SPM"]},
61
+ # }
62
+
63
+ # docs_summaries = self.vectorstore.similarity_search_with_score(query=query,filter = filters_summaries,k = self.k_summary)
64
+ # docs_summaries = [x for x in docs_summaries if x[1] > self.threshold]
65
+ # # docs_summaries = []
66
+
67
+ # # Search for k_total - k_summary documents in the full reports dataset
68
+ # filters_full = {
69
+ # **filters,
70
+ # "chunk_type":"text",
71
+ # "report_type": { "$nin":["SPM"]},
72
+ # }
73
+ # k_full = self.k_total - len(docs_summaries)
74
+ # docs_full = self.vectorstore.similarity_search_with_score(query=query,filter = filters_full,k = k_full)
75
 
76
+ # # Images
77
+ # filters_image = {
78
+ # **filters,
79
+ # "chunk_type":"image"
80
+ # }
81
+ # docs_images = self.vectorstore.similarity_search_with_score(query=query,filter = filters_image,k = k_full)
82
+
83
+ # # docs_images = []
 
 
 
 
 
 
 
84
 
85
+ # # Concatenate documents
86
+ # # docs = docs_summaries + docs_full + docs_images
 
 
 
 
 
 
 
87
 
88
+ # # Filter if scores are below threshold
89
+ # # docs = [x for x in docs if x[1] > self.threshold]
90
 
91
+ # docs_summaries, docs_full, docs_images = _add_metadata_and_score(docs_summaries), _add_metadata_and_score(docs_full), _add_metadata_and_score(docs_images)
92
+
93
+ # # Filter if length are below threshold
94
+ # docs_summaries = [x for x in docs_summaries if len(x.page_content) > self.min_size]
95
+ # docs_full = [x for x in docs_full if len(x.page_content) > self.min_size]
96
+
97
+
98
+ # return {
99
+ # "docs_summaries" : docs_summaries,
100
+ # "docs_full" : docs_full,
101
+ # "docs_images" : docs_images,
102
+ # }
sandbox/20241104 - CQA - StepByStep CQA.ipynb CHANGED
The diff for this file is too large to render. See raw diff