diff --git "a/sandbox/20240310 - CQA - Semantic Routing 1.ipynb" "b/sandbox/20240310 - CQA - Semantic Routing 1.ipynb"
--- "a/sandbox/20240310 - CQA - Semantic Routing 1.ipynb"
+++ "b/sandbox/20240310 - CQA - Semantic Routing 1.ipynb"
@@ -2,19 +2,27 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 8,
"id": "07f255d7",
"metadata": {
"tags": []
},
"outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The autoreload extension is already loaded. To reload it, use:\n",
+ " %reload_ext autoreload\n"
+ ]
+ },
{
"data": {
"text/plain": [
"True"
]
},
- "execution_count": 1,
+ "execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -46,7 +54,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 9,
"id": "6af1a96e",
"metadata": {
"tags": []
@@ -62,40 +70,56 @@
},
{
"cell_type": "code",
- "execution_count": 3,
- "id": "a9128bfc-4b24-4b25-b7a7-68423b1124b1",
+ "execution_count": 25,
+ "id": "148b7cf0",
"metadata": {},
"outputs": [
{
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/tim/anaconda3/envs/climateqa/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
- " from .autonotebook import tqdm as notebook_tqdm\n",
- "INFO:flashrank.Ranker:Downloading ms-marco-TinyBERT-L-2-v2...\n"
- ]
- },
+ "data": {
+ "text/plain": [
+ "{'object': 'list',\n",
+ " 'data': [{'id': 'gpt-3.5-turbo-0125',\n",
+ " 'object': 'model',\n",
+ " 'created': 1706048358,\n",
+ " 'owned_by': 'system'},\n",
+ " {'id': 'gpt-4o-mini',\n",
+ " 'object': 'model',\n",
+ " 'created': 1721172741,\n",
+ " 'owned_by': 'system'}]}"
+ ]
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import requests\n",
+ "res = requests.get(\"https://api.openai.com/v1/models\",\n",
+ " headers = {\"Authorization\": f\"Bearer {os.getenv('OPENAI_API_KEY')}\"})\n",
+ "res.json()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "a9128bfc-4b24-4b25-b7a7-68423b1124b1",
+ "metadata": {},
+ "outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Loading FlashRankRanker model ms-marco-TinyBERT-L-2-v2\n",
- "Loading model FlashRank model ms-marco-TinyBERT-L-2-v2...\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "ms-marco-TinyBERT-L-2-v2.zip: 100%|██████████| 3.26M/3.26M [00:00<00:00, 69.9MiB/s]\n"
+ "Auto-updated model_name to rerank-english-v3.0 for API provider cohere\n",
+ "Loading APIRanker model rerank-english-v3.0\n"
]
}
],
"source": [
"from climateqa.engine.reranker import get_reranker\n",
"\n",
- "# reranker = get_reranker(\"large\")\n",
- "reranker = get_reranker(\"nano\")\n",
+ "reranker = get_reranker(\"large\")\n",
+ "# reranker = get_reranker(\"nano\")\n",
"# from rerankers import Reranker\n",
"# # Specific flashrank model.\n",
"# # reranker = Reranker('ms-marco-TinyBERT-L-2-v2', model_type='flashrank')\n",
@@ -108,7 +132,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 12,
"id": "942d2705-22dd-46cf-8c31-6daa127e4743",
"metadata": {},
"outputs": [
@@ -139,6 +163,140 @@
"vectorstore = get_pinecone_vectorstore(embeddings_function)"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "bdc875a5",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[Document(metadata={'chunk_type': 'image', 'document_id': 'document7', 'document_number': 7.0, 'element_id': 'Picture_0_12', 'figure_code': 'N/A', 'file_size': 164.2392578125, 'image_path': '/dbfs/mnt/ai4sclqa/raw/climateqa/documents/document7/images/Picture_0_12.png', 'n_pages': 50.0, 'name': 'Summary for Policymakers. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 'N/A', 'num_tokens': 'N/A', 'num_tokens_approx': 'N/A', 'num_words': 'N/A', 'page_number': 13, 'release_date': 2022.0, 'report_type': 'SPM', 'section_header': 'N/A', 'short_name': 'IPCC AR6 WGIII SPM', 'source': 'IPCC', 'toc_level0': '_Hlk99620068', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SummaryForPolicymakers.pdf', 'similarity_score': 0.54172045, 'content': \"The image is a statistical graph that provides a visual representation of global net anthropogenic greenhouse gas (GHG) emissions by region from 1990 to 2019. It highlights the contribution of different regions to overall GHG emissions, including emissions linked to fossil fuels and industry (CO2-FFI), net CO2 emissions resulting from land use, land-use change, and forestry (CO2-LULUCF), and other GHG emissions. Each region's percentage share of global emissions is indicated for selected years, showing trends and distribution of GHG emissions over time. This graph is useful for understanding regional disparities in emission levels and their changes over the past decades, contributing to the assessment of climate change impacts and regional responsibilities.\"}, page_content=\"The image is a statistical graph that provides a visual representation of global net anthropogenic greenhouse gas (GHG) emissions by region from 1990 to 2019. It highlights the contribution of different regions to overall GHG emissions, including emissions linked to fossil fuels and industry (CO2-FFI), net CO2 emissions resulting from land use, land-use change, and forestry (CO2-LULUCF), and other GHG emissions. Each region's percentage share of global emissions is indicated for selected years, showing trends and distribution of GHG emissions over time. This graph is useful for understanding regional disparities in emission levels and their changes over the past decades, contributing to the assessment of climate change impacts and regional responsibilities.\"),\n",
+ " Document(metadata={'chunk_type': 'image', 'document_id': 'document7', 'document_number': 7.0, 'element_id': 'Picture_1_12', 'figure_code': 'N/A', 'file_size': 108.8359375, 'image_path': '/dbfs/mnt/ai4sclqa/raw/climateqa/documents/document7/images/Picture_1_12.png', 'n_pages': 50.0, 'name': 'Summary for Policymakers. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 'N/A', 'num_tokens': 'N/A', 'num_tokens_approx': 'N/A', 'num_words': 'N/A', 'page_number': 13, 'release_date': 2022.0, 'report_type': 'SPM', 'section_header': 'N/A', 'short_name': 'IPCC AR6 WGIII SPM', 'source': 'IPCC', 'toc_level0': '_Hlk99620068', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SummaryForPolicymakers.pdf', 'similarity_score': 0.522807181, 'content': 'The image presents two bar graphs related to greenhouse gas emissions. The left graph illustrates the global net anthropogenic CO2 emissions by region from 1990 to 2019, highlighting the significant contributions from North America, Europe, Eastern Asia, and other regions, in decreasing order. The right graph compares net anthropogenic GHG emissions per capita to the total population per region as of the year 2019, showcasing the emissions relative to population size for regions such as North America, Europe, and others. Both graphs serve to convey the disparities in emissions between different global regions, emphasizing regional differences in both total and per capita emissions. This information is critical for understanding regional contributions to climate change and informing policy decisions for mitigating greenhouse gas emissions.'}, page_content='The image presents two bar graphs related to greenhouse gas emissions. The left graph illustrates the global net anthropogenic CO2 emissions by region from 1990 to 2019, highlighting the significant contributions from North America, Europe, Eastern Asia, and other regions, in decreasing order. The right graph compares net anthropogenic GHG emissions per capita to the total population per region as of the year 2019, showcasing the emissions relative to population size for regions such as North America, Europe, and others. Both graphs serve to convey the disparities in emissions between different global regions, emphasizing regional differences in both total and per capita emissions. This information is critical for understanding regional contributions to climate change and informing policy decisions for mitigating greenhouse gas emissions.'),\n",
+ " Document(metadata={'chunk_type': 'image', 'document_id': 'document1', 'document_number': 1.0, 'element_id': 'Picture_0_12', 'figure_code': 'N/A', 'file_size': 50.4736328125, 'image_path': '/dbfs/mnt/ai4sclqa/raw/climateqa/documents/document1/images/Picture_0_12.png', 'n_pages': 32.0, 'name': 'Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 'N/A', 'num_tokens': 'N/A', 'num_tokens_approx': 'N/A', 'num_words': 'N/A', 'page_number': 13, 'release_date': 2021.0, 'report_type': 'SPM', 'section_header': 'N/A', 'short_name': 'IPCC AR6 WGI SPM', 'source': 'IPCC', 'toc_level0': 'B. Possible Climate Futures', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf', 'similarity_score': 0.517367482, 'content': 'This image is a graph depicting future annual emissions of CO2 and key non-CO2 drivers across five different illustrative scenarios. The five scenarios, indicated by SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, represent varying trajectories of greenhouse gas emissions from 2015 to 2100, influencing future climate conditions. The lines on the graph, each corresponding to a scenario, illustrate the potential increase or decrease in emissions over time, which will affect the global surface temperature change by the end of the 21st century compared to pre-industrial levels. The image serves as a visual summary of projected emission pathways and their implications for long-term climate change.'}, page_content='This image is a graph depicting future annual emissions of CO2 and key non-CO2 drivers across five different illustrative scenarios. The five scenarios, indicated by SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, represent varying trajectories of greenhouse gas emissions from 2015 to 2100, influencing future climate conditions. The lines on the graph, each corresponding to a scenario, illustrate the potential increase or decrease in emissions over time, which will affect the global surface temperature change by the end of the 21st century compared to pre-industrial levels. The image serves as a visual summary of projected emission pathways and their implications for long-term climate change.'),\n",
+ " Document(metadata={'chunk_type': 'image', 'document_id': 'document7', 'document_number': 7.0, 'element_id': 'Picture_0_28', 'figure_code': 'N/A', 'file_size': 398.6806640625, 'image_path': '/dbfs/mnt/ai4sclqa/raw/climateqa/documents/document7/images/Picture_0_28.png', 'n_pages': 50.0, 'name': 'Summary for Policymakers. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 'N/A', 'num_tokens': 'N/A', 'num_tokens_approx': 'N/A', 'num_words': 'N/A', 'page_number': 29, 'release_date': 2022.0, 'report_type': 'SPM', 'section_header': 'N/A', 'short_name': 'IPCC AR6 WGIII SPM', 'source': 'IPCC', 'toc_level0': '_Hlk99447836', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SummaryForPolicymakers.pdf', 'similarity_score': 0.51093781, 'content': 'Summary:\\nThe image presents a set of four graphs depicting modelled mitigation pathways with the objective of limiting global warming to 1.5 degrees Celsius and 2 degrees Celsius. Each graph illustrates different aspects of greenhouse gas (GHG) emissions: (a) the net global GHG emissions, (b) the net global carbon dioxide (CO2) emissions, (c) the net global methane (CH4) emissions, and (d) the net global nitrous oxide (N2O) emissions. The charts reflect deep, rapid, and sustained emissions reductions, showing past emissions, the model range for 2015 emissions, and projections up to the year 2100 under various scenarios, including current policies, pledges, and pathways designed to limit warming. The colored areas represent the very likely ranges of emissions for different climate scenarios, and markers indicate the year of net-zero GHG or CO2 emissions for each scenario. The graphs collectively underscore the need for diverse strategies and immediate action to achieve the targeted temperature goals and reduce emissions to combat climate change effectively.'}, page_content='Summary:\\nThe image presents a set of four graphs depicting modelled mitigation pathways with the objective of limiting global warming to 1.5 degrees Celsius and 2 degrees Celsius. Each graph illustrates different aspects of greenhouse gas (GHG) emissions: (a) the net global GHG emissions, (b) the net global carbon dioxide (CO2) emissions, (c) the net global methane (CH4) emissions, and (d) the net global nitrous oxide (N2O) emissions. The charts reflect deep, rapid, and sustained emissions reductions, showing past emissions, the model range for 2015 emissions, and projections up to the year 2100 under various scenarios, including current policies, pledges, and pathways designed to limit warming. The colored areas represent the very likely ranges of emissions for different climate scenarios, and markers indicate the year of net-zero GHG or CO2 emissions for each scenario. The graphs collectively underscore the need for diverse strategies and immediate action to achieve the targeted temperature goals and reduce emissions to combat climate change effectively.'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document11', 'document_number': 11.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 24.0, 'name': 'Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty', 'num_characters': 968.0, 'num_tokens': 210.0, 'num_tokens_approx': 233.0, 'num_words': 175.0, 'page_number': 13, 'release_date': 2018.0, 'report_type': 'SPM', 'section_header': 'Non-CO2 emissions relative to 2010', 'short_name': 'IPCC SR GW SPM', 'source': 'IPCC', 'toc_level0': 'N/A', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SPM_version_report_LR.pdf', 'similarity_score': 0.509297669, 'content': 'Figure SPM.3a | Global emissions pathway characteristics. The main panel shows global net anthropogenic CO2 emissions in pathways limiting global warming to 1.5degC with no or limited (less than 0.1degC) overshoot and pathways with higher overshoot. The shaded area shows the full range for pathways analysed in this Report. The panels on the right show non-CO2 emissions ranges for three compounds with large historical forcing and a substantial portion of emissions coming from sources distinct from those central to CO2 mitigation. Shaded areas in these panels show the 5-95% (light shading) and interquartile (dark shading) ranges of pathways limiting global warming to 1.5degC with no or limited overshoot. Box and whiskers at the bottom of the figure show the timing of pathways reaching global net zero CO2 emission levels, and a comparison with pathways limiting global warming to 2degC with at least 66% probability. Four illustrative model pathways'}, page_content='Figure SPM.3a | Global emissions pathway characteristics. The main panel shows global net anthropogenic CO2 emissions in pathways limiting global warming to 1.5degC with no or limited (less than 0.1degC) overshoot and pathways with higher overshoot. The shaded area shows the full range for pathways analysed in this Report. The panels on the right show non-CO2 emissions ranges for three compounds with large historical forcing and a substantial portion of emissions coming from sources distinct from those central to CO2 mitigation. Shaded areas in these panels show the 5-95% (light shading) and interquartile (dark shading) ranges of pathways limiting global warming to 1.5degC with no or limited overshoot. Box and whiskers at the bottom of the figure show the timing of pathways reaching global net zero CO2 emission levels, and a comparison with pathways limiting global warming to 2degC with at least 66% probability. Four illustrative model pathways'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 797.0, 'num_tokens': 161.0, 'num_tokens_approx': 170.0, 'num_words': 128.0, 'page_number': 1208, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Aluminium and other non-ferrous metals', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '11.4 Sector Mitigation Pathways and Cross-sector Implications', 'toc_level1': 'Box\\xa011.2 |\\xa0Plastics and Climate Change', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.547677815, 'content': 'The use of low- and zero-GHG electricity (e.g., historically from hydropower) can reduce the indirect emissions associated with making aluminium. A public-private partnership with financial support from the province of Quebec and the Canadian federal government has recently announced a fundamental modification to the Hall-Heroult process by which the graphite electrode process emissions can be eliminated by substitution of inert electrodes. This technology is slated to be available in 2024 and is potentially retrofittable to existing facilities (Saevarsdottir et al. 2020).\\nSmelting and otherwise processing of other non-ferrous metals like nickel, zinc, copper, magnesium and titanium with less overall emissions have relatively similar emissions reduction strategies'}, page_content='The use of low- and zero-GHG electricity (e.g., historically from hydropower) can reduce the indirect emissions associated with making aluminium. A public-private partnership with financial support from the province of Quebec and the Canadian federal government has recently announced a fundamental modification to the Hall-Heroult process by which the graphite electrode process emissions can be eliminated by substitution of inert electrodes. This technology is slated to be available in 2024 and is potentially retrofittable to existing facilities (Saevarsdottir et al. 2020).\\nSmelting and otherwise processing of other non-ferrous metals like nickel, zinc, copper, magnesium and titanium with less overall emissions have relatively similar emissions reduction strategies'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 858.0, 'num_tokens': 196.0, 'num_tokens_approx': 213.0, 'num_words': 160.0, 'page_number': 280, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Emissions Trends and Drivers ', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '2.7 Emissions Associated With Existing and\\xa0Planned Long-lived Infrastructure', 'toc_level1': '2.7.2 Estimates of Future CO2 Emissions From\\xa0Long-lived Infrastructures', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.530359745, 'content': 'Figure 2.26 | Future CO2 emissions from existing and currently planned fossil fuel infrastructure in the context of Paris carbon budgets in GtCO2 based on historic patterns of infrastructure lifetimes and capacity utilisation. Future CO2 emissions estimates of existing infrastructure for the electricity sector as well as all other sectors (industry, transport, buildings, other fossil fuel infrastructures) and of proposed infrastructures for coal power as well as gas and oil power. Grey bars on the right depict the range (5th-95th percentile) in overall cumulative net CO2 emissions until reaching net zero CO2 in pathways that limit warming to 1.5degC with no or limited overshoot (1.5degC scenarios), and in pathways that limit warming to 2degC (<67%) (2degC scenarios). Source: based on Edenhofer et al. (2018) and Tong et al. (2019). \\n267267'}, page_content='Figure 2.26 | Future CO2 emissions from existing and currently planned fossil fuel infrastructure in the context of Paris carbon budgets in GtCO2 based on historic patterns of infrastructure lifetimes and capacity utilisation. Future CO2 emissions estimates of existing infrastructure for the electricity sector as well as all other sectors (industry, transport, buildings, other fossil fuel infrastructures) and of proposed infrastructures for coal power as well as gas and oil power. Grey bars on the right depict the range (5th-95th percentile) in overall cumulative net CO2 emissions until reaching net zero CO2 in pathways that limit warming to 1.5degC with no or limited overshoot (1.5degC scenarios), and in pathways that limit warming to 2degC (<67%) (2degC scenarios). Source: based on Edenhofer et al. (2018) and Tong et al. (2019). \\n267267'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document8', 'document_number': 8.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 102.0, 'name': 'Technical Summary. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 796.0, 'num_tokens': 176.0, 'num_tokens_approx': 197.0, 'num_words': 148.0, 'page_number': 22, 'release_date': 2022.0, 'report_type': 'TS', 'section_header': 'Technical Summary\\r\\ne fallen, ', 'short_name': 'IPCC AR6 WGIII TS', 'source': 'IPCC', 'toc_level0': 'N/A', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_TechnicalSummary.pdf', 'similarity_score': 0.530267477, 'content': 'Figure TS.8 | Future CO2 emissions from existing and currently planned fossil fuel infrastructure in the context of the Paris Agreement carbon budgets in GtCO2 based on historic patterns of infrastructure lifetimes and Future CO2 emissions estimates of existing infrastructure for the electricity sector as well as all other sectors (industry, transport, buildings, other fossil fuel infrastructures) and of proposed infrastructures for coal power as well as gas and oil power. Grey bars on the right depict the range (5-95th percentile) in overall cumulative net CO2 emissions until reaching net zero CO2 in pathways that limit warming to 1.5degC (>50%) with no or limited overshoot (1.5degC scenarios), and in pathways that limit warming to 2degC (>67%) (2degC scenarios). {Figure 2.26}'}, page_content='Figure TS.8 | Future CO2 emissions from existing and currently planned fossil fuel infrastructure in the context of the Paris Agreement carbon budgets in GtCO2 based on historic patterns of infrastructure lifetimes and Future CO2 emissions estimates of existing infrastructure for the electricity sector as well as all other sectors (industry, transport, buildings, other fossil fuel infrastructures) and of proposed infrastructures for coal power as well as gas and oil power. Grey bars on the right depict the range (5-95th percentile) in overall cumulative net CO2 emissions until reaching net zero CO2 in pathways that limit warming to 1.5degC (>50%) with no or limited overshoot (1.5degC scenarios), and in pathways that limit warming to 2degC (>67%) (2degC scenarios). {Figure 2.26}'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 796.0, 'num_tokens': 176.0, 'num_tokens_approx': 197.0, 'num_words': 148.0, 'page_number': 81, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Technical Summary\\r\\ne fallen, ', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': 'TS.3 Emission Trends and Drivers', 'toc_level1': 'Box TS.2 | Greenhouse Gas (GHG) Emission Metrics Provide Simplified Information About\\xa0the\\xa0Effects of Different Greenhouse Gases', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.530267477, 'content': 'Figure TS.8 | Future CO2 emissions from existing and currently planned fossil fuel infrastructure in the context of the Paris Agreement carbon budgets in GtCO2 based on historic patterns of infrastructure lifetimes and Future CO2 emissions estimates of existing infrastructure for the electricity sector as well as all other sectors (industry, transport, buildings, other fossil fuel infrastructures) and of proposed infrastructures for coal power as well as gas and oil power. Grey bars on the right depict the range (5-95th percentile) in overall cumulative net CO2 emissions until reaching net zero CO2 in pathways that limit warming to 1.5degC (>50%) with no or limited overshoot (1.5degC scenarios), and in pathways that limit warming to 2degC (>67%) (2degC scenarios). {Figure 2.26}'}, page_content='Figure TS.8 | Future CO2 emissions from existing and currently planned fossil fuel infrastructure in the context of the Paris Agreement carbon budgets in GtCO2 based on historic patterns of infrastructure lifetimes and Future CO2 emissions estimates of existing infrastructure for the electricity sector as well as all other sectors (industry, transport, buildings, other fossil fuel infrastructures) and of proposed infrastructures for coal power as well as gas and oil power. Grey bars on the right depict the range (5-95th percentile) in overall cumulative net CO2 emissions until reaching net zero CO2 in pathways that limit warming to 1.5degC (>50%) with no or limited overshoot (1.5degC scenarios), and in pathways that limit warming to 2degC (>67%) (2degC scenarios). {Figure 2.26}'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document22', 'document_number': 22.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 28.0, 'name': 'Annex I: Glossary In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate', 'num_characters': 455.0, 'num_tokens': 110.0, 'num_tokens_approx': 126.0, 'num_words': 95.0, 'page_number': 6, 'release_date': 2019.0, 'report_type': 'Special Report', 'section_header': 'Black carbon (BC) ', 'short_name': 'IPCC SR OC A1 G', 'source': 'IPCC', 'toc_level0': 'N/A', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/10_SROCC_AnnexI-Glossary_FINAL.pdf', 'similarity_score': 0.528814554, 'content': 'Black carbon (BC) \\nA relatively pure form of carbon, also known as soot, arising from the incomplete combustion of fossil fuels, biofuel and biomass. It only stays in the atmosphere for days or weeks. BC is a climate forcing agent with strong warming effect, both in the atmosphere and when deposited on snow or ice. See also Aerosol, Albedo, Forcing and Short-lived climate forcers (SLCF).\\n Black carbon (BC) '}, page_content='Black carbon (BC) \\nA relatively pure form of carbon, also known as soot, arising from the incomplete combustion of fossil fuels, biofuel and biomass. It only stays in the atmosphere for days or weeks. BC is a climate forcing agent with strong warming effect, both in the atmosphere and when deposited on snow or ice. See also Aerosol, Albedo, Forcing and Short-lived climate forcers (SLCF).\\n Black carbon (BC) '),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document2', 'document_number': 2.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2409.0, 'name': 'Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 1040.0, 'num_tokens': 238.0, 'num_tokens_approx': 258.0, 'num_words': 194.0, 'page_number': 717, 'release_date': 2021.0, 'report_type': 'Full Report', 'section_header': '5.2.1.5 CO2 Budget', 'short_name': 'IPCC AR6 WGI FR', 'source': 'IPCC', 'toc_level0': '5: Global Carbon and Other Biogeochemical Cycles and Feedbacks', 'toc_level1': '5.2 Historical Trends, Variability and Budgets of CO2, CH4 and N2O', 'toc_level2': '5.2.2 Methane (CH4): Trends, Variability and Budget', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf', 'similarity_score': 0.522113144, 'content': 'Figure 5.12 | Global carbon (CO2) budget (2010-2019). Yellow arrows represent annual carbon fluxes (in PgC yr-1) associated with the natural carbon cycle, estimated for the time prior to the industrial era, around 1750. Pink arrows represent anthropogenic fluxes averaged over the period 2010-2019. The rate of carbon accumulation in the atmosphere is equal to net land-use change emissions, including land management (called LULUCF in the main text) plus fossil fuel emissions, minus land and ocean net sinks (plus a small budget imbalance, Table 5.1). Circles with yellow numbers represent pre-industrial carbon stocks in PgC. Circles with pink numbers represent anthropogenic changes to these stocks (cumulative anthropogenic fluxes) since 1750. Anthropogenic net fluxes are reproduced from Friedlingstein et al. (2020). The relative change of gross photosynthesis since pre-industrial times is based on 15 DGVMs used in Friedlingstein et al. (2020). The corresponding emissions by total respiration and fire are those required'}, page_content='Figure 5.12 | Global carbon (CO2) budget (2010-2019). Yellow arrows represent annual carbon fluxes (in PgC yr-1) associated with the natural carbon cycle, estimated for the time prior to the industrial era, around 1750. Pink arrows represent anthropogenic fluxes averaged over the period 2010-2019. The rate of carbon accumulation in the atmosphere is equal to net land-use change emissions, including land management (called LULUCF in the main text) plus fossil fuel emissions, minus land and ocean net sinks (plus a small budget imbalance, Table 5.1). Circles with yellow numbers represent pre-industrial carbon stocks in PgC. Circles with pink numbers represent anthropogenic changes to these stocks (cumulative anthropogenic fluxes) since 1750. Anthropogenic net fluxes are reproduced from Friedlingstein et al. (2020). The relative change of gross photosynthesis since pre-industrial times is based on 15 DGVMs used in Friedlingstein et al. (2020). The corresponding emissions by total respiration and fire are those required'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 264.0, 'num_tokens': 66.0, 'num_tokens_approx': 77.0, 'num_words': 58.0, 'page_number': 438, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Introduction', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '4.2 Accelerating Mitigation Actions Across Scales', 'toc_level1': 'Cross-Chapter Box\\xa04\\xa0| Comparison of NDCs and current policies with the 2030 GHG Emissions from Long-term Temperature Pathways', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.507944763, 'content': 'Cross-Chapter Box 4 (continued)\\nCross-Chapter Box 4, Figure 1 (continued): Global GHG emissions of modelled pathways (funnels in Panel a, and associated bars in Panels b, c, d) and projected emission outcomes from near-term policy assessments for 2030 (Panel b).'}, page_content='Cross-Chapter Box 4 (continued)\\nCross-Chapter Box 4, Figure 1 (continued): Global GHG emissions of modelled pathways (funnels in Panel a, and associated bars in Panels b, c, d) and projected emission outcomes from near-term policy assessments for 2030 (Panel b).'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 1229.0, 'num_tokens': 250.0, 'num_tokens_approx': 293.0, 'num_words': 220.0, 'page_number': 1809, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Anthropogenic Resulting from or produced by human activities.', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '_Hlk111724995', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.507337511, 'content': 'Black carbon (BC) A relatively pure form of carbon, also known as soot, arising from the incomplete combustion of fossil fuels, biofuel, and biomass. It only stays in the atmosphere for days or weeks. BC is a climate forcing agent with strong warming effect, both in the atmosphere and when deposited on snow or ice. See also Aerosol.\\nBlue carbon Biologically-driven carbon fluxes and storage in marine systems that are amenable to management. Coastal blue carbon focuses on rooted vegetation in the coastal zone, such as tidal marshes, mangroves and seagrasses. These ecosystems have high carbon burial rates on a per unit area basis and accumulate carbon in their soils and sediments. They provide many non-climatic benefits and can contribute to ecosystem-based adaptation. If degraded or lost, coastal blue carbon ecosystems are likely to release most of their carbon back to the atmosphere. There is current debate regarding the application of the blue carbon concept to other coastal and non-coastal processes and ecosystems, including the open ocean. See also Sequestration.\\n Blue infrastructure See Infrastructure. \\n\\nBlue infrastructure See Infrastructure.'}, page_content='Black carbon (BC) A relatively pure form of carbon, also known as soot, arising from the incomplete combustion of fossil fuels, biofuel, and biomass. It only stays in the atmosphere for days or weeks. BC is a climate forcing agent with strong warming effect, both in the atmosphere and when deposited on snow or ice. See also Aerosol.\\nBlue carbon Biologically-driven carbon fluxes and storage in marine systems that are amenable to management. Coastal blue carbon focuses on rooted vegetation in the coastal zone, such as tidal marshes, mangroves and seagrasses. These ecosystems have high carbon burial rates on a per unit area basis and accumulate carbon in their soils and sediments. They provide many non-climatic benefits and can contribute to ecosystem-based adaptation. If degraded or lost, coastal blue carbon ecosystems are likely to release most of their carbon back to the atmosphere. There is current debate regarding the application of the blue carbon concept to other coastal and non-coastal processes and ecosystems, including the open ocean. See also Sequestration.\\n Blue infrastructure See Infrastructure. \\n\\nBlue infrastructure See Infrastructure.'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 1057.0, 'num_tokens': 239.0, 'num_tokens_approx': 265.0, 'num_words': 199.0, 'page_number': 394, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Mitigation Pathways Compatible with Long-term Goals ', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '3.8 Feasibility of Socio/Techno/Economic Transitions', 'toc_level1': '3.8.2 Feasibility Appraisal of Low-carbon Scenarios', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.506243169, 'content': 'Mitigation Pathways Compatible with Long-term Goals \\nFigure 3.43 | Feasibility characteristics of the Paris-consistent scenarios in the AR6 scenarios database : Feasibility corridors for the AR6 scenarios database, applying the methodology by (Brutschin et al. 2021). (a) The fraction of scenarios falling within three categories of feasibility concerns (plausible, best case, unprecedented), for different times (2030, 2050, 2100), different climate categories consistent with the Paris Agreement and five dimensions. (b) Composite feasibility score (obtained by geometric mean of underlying indicators) over time for scenarios with immediate and delayed global mitigation efforts, for different climate categories (C1, C2, C3. Note: no C1 scenario has delayed participation). (c) The fraction of scenarios which in any point in time over the century exceed the feasibility concerns, for C1 and C3 climate categories. Overlayed are the Illustrative Mitigation Pathways (IMP-LP, IMP-SP, IMP-Ren: C1 category; IMP-Neg, IMP-GS: C3 category).\\n381381'}, page_content='Mitigation Pathways Compatible with Long-term Goals \\nFigure 3.43 | Feasibility characteristics of the Paris-consistent scenarios in the AR6 scenarios database : Feasibility corridors for the AR6 scenarios database, applying the methodology by (Brutschin et al. 2021). (a) The fraction of scenarios falling within three categories of feasibility concerns (plausible, best case, unprecedented), for different times (2030, 2050, 2100), different climate categories consistent with the Paris Agreement and five dimensions. (b) Composite feasibility score (obtained by geometric mean of underlying indicators) over time for scenarios with immediate and delayed global mitigation efforts, for different climate categories (C1, C2, C3. Note: no C1 scenario has delayed participation). (c) The fraction of scenarios which in any point in time over the century exceed the feasibility concerns, for C1 and C3 climate categories. Overlayed are the Illustrative Mitigation Pathways (IMP-LP, IMP-SP, IMP-Ren: C1 category; IMP-Neg, IMP-GS: C3 category).\\n381381'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 469.0, 'num_tokens': 98.0, 'num_tokens_approx': 106.0, 'num_words': 80.0, 'page_number': 1477, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': '14.3.2 Elements of the Paris Agreement Relevant \\r\\nto Mitigation ', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '14.3 The UNFCCC and the Paris Agreement ', 'toc_level1': '14.3.2 Elements of the Paris Agreement Relevant to\\xa0Mitigation ', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.506143391, 'content': 'with its internationally inscribed targets and timetable for emissions reduction for developed countries, the Paris Agreement contains Nationally Determined Contributions embedded in an international system of transparency and accountability for all countries (Doelle 2016; Maljean-Dubois and Wemaere 2016) accompanied by a shared global goal, in particular in relation to a temperature limit. \\n 14.3.2.1 Context and Purpose '}, page_content='with its internationally inscribed targets and timetable for emissions reduction for developed countries, the Paris Agreement contains Nationally Determined Contributions embedded in an international system of transparency and accountability for all countries (Doelle 2016; Maljean-Dubois and Wemaere 2016) accompanied by a shared global goal, in particular in relation to a temperature limit. \\n 14.3.2.1 Context and Purpose '),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 1109.0, 'num_tokens': 213.0, 'num_tokens_approx': 241.0, 'num_words': 181.0, 'page_number': 1808, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Anthropogenic Resulting from or produced by human activities.', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '_Hlk111724995', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.505911, 'content': 'Avoid, Shift, Improve (ASI) Reducing greenhouse gas emissions by avoiding the use of an emissions-producing service entirely, shifting to the lowest-emission mode of providing the service, and/or improving the technologies and systems for providing the service in ways that reduce emissions.\\nBaseline/reference See Reference period and Reference scenario. Baseline period See Reference period.\\nBiochar Relatively stable, carbon-rich material produced by heating biomass in an oxygen-limited environment. Biochar is distinguished from charcoal by its application: biochar is used as a soil amendment with the intention to improve soil functions and to reduce greenhouse gas emissions from biomass that would otherwise decompose rapidly (IBI 2018). See also Anthropogenic removals and Carbon dioxide removal (CDR).\\nBiodiversity Biodiversity or biological diversity means the variability among living organisms from all sources including, among other things, terrestrial, marine and other aquatic ecosystems, and the ecological complexes of which they are part; this includes diversity'}, page_content='Avoid, Shift, Improve (ASI) Reducing greenhouse gas emissions by avoiding the use of an emissions-producing service entirely, shifting to the lowest-emission mode of providing the service, and/or improving the technologies and systems for providing the service in ways that reduce emissions.\\nBaseline/reference See Reference period and Reference scenario. Baseline period See Reference period.\\nBiochar Relatively stable, carbon-rich material produced by heating biomass in an oxygen-limited environment. Biochar is distinguished from charcoal by its application: biochar is used as a soil amendment with the intention to improve soil functions and to reduce greenhouse gas emissions from biomass that would otherwise decompose rapidly (IBI 2018). See also Anthropogenic removals and Carbon dioxide removal (CDR).\\nBiodiversity Biodiversity or biological diversity means the variability among living organisms from all sources including, among other things, terrestrial, marine and other aquatic ecosystems, and the ecological complexes of which they are part; this includes diversity'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 1080.0, 'num_tokens': 215.0, 'num_tokens_approx': 237.0, 'num_words': 178.0, 'page_number': 1476, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'International Cooperation ', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '14.3 The UNFCCC and the Paris Agreement ', 'toc_level1': '14.3.2 Elements of the Paris Agreement Relevant to\\xa0Mitigation ', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.505601704, 'content': \"Figure 14.1 | Key features of the Paris Agreement. Arrows illustrate the interrelationship between the different features of the Paris Agreement, in particular between the Agreement's goals, required actions through NDCs, support (finance, technology and capacity building), transparency framework and global stocktake process. The figure also represents points of interconnection with domestic mitigation measures, whether taken by state Parties or by non-state actors (NSAs). This figure is illustrative rather than exhaustive of the features and interconnections.\\n14631463\\n\\x0c\\nIt is in the context of this complex, multipolar and highly differentiated world - with a heterogeneity of interests, constraints and capacities, increased contestations over shares of the carbon and development space, as well as diffused leadership - that the Paris Agreement was negotiated. This context fundamentally influenced the shape of the Paris Agreement, in particular on issues relating to its architecture, 'legalisation' (Karlas 2017) and differentiation (Bodansky et al.\"}, page_content=\"Figure 14.1 | Key features of the Paris Agreement. Arrows illustrate the interrelationship between the different features of the Paris Agreement, in particular between the Agreement's goals, required actions through NDCs, support (finance, technology and capacity building), transparency framework and global stocktake process. The figure also represents points of interconnection with domestic mitigation measures, whether taken by state Parties or by non-state actors (NSAs). This figure is illustrative rather than exhaustive of the features and interconnections.\\n14631463\\n\\x0c\\nIt is in the context of this complex, multipolar and highly differentiated world - with a heterogeneity of interests, constraints and capacities, increased contestations over shares of the carbon and development space, as well as diffused leadership - that the Paris Agreement was negotiated. This context fundamentally influenced the shape of the Paris Agreement, in particular on issues relating to its architecture, 'legalisation' (Karlas 2017) and differentiation (Bodansky et al.\"),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 876.0, 'num_tokens': 230.0, 'num_tokens_approx': 221.0, 'num_words': 166.0, 'page_number': 1477, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': '14.3.2 Elements of the Paris Agreement Relevant \\r\\nto Mitigation ', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '14.3 The UNFCCC and the Paris Agreement ', 'toc_level1': '14.3.2 Elements of the Paris Agreement Relevant to\\xa0Mitigation ', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.503208339, 'content': \"Figure 14.1 illustrates graphically the key features of the Paris Agreement. The Paris Agreement is based on a set of binding procedural obligations requiring Parties to 'prepare, communicate, and maintain' 'Nationally Determined Contributions' (NDCs) (UNFCCC 2015a, Art. 4.2) every five years (UNFCCC 2015a, Art. 4.9). These obligations are complemented by: (1) an 'ambition cycle' that expects Parties, informed by five-yearly global stocktakes (Art. 14), to submit successive NDCs representing a progression on their previous NDCs (UNFCCC 2015a; Bodansky et al. 2017b), and (2) an 'enhanced transparency framework' that places extensive informational demands on Parties, tailored to capacities, and establishes review processes to enable tracking of progress towards achievement of NDCs (Oberthur and Bodle 2016). In contrast to the Kyoto Protocol\"}, page_content=\"Figure 14.1 illustrates graphically the key features of the Paris Agreement. The Paris Agreement is based on a set of binding procedural obligations requiring Parties to 'prepare, communicate, and maintain' 'Nationally Determined Contributions' (NDCs) (UNFCCC 2015a, Art. 4.2) every five years (UNFCCC 2015a, Art. 4.9). These obligations are complemented by: (1) an 'ambition cycle' that expects Parties, informed by five-yearly global stocktakes (Art. 14), to submit successive NDCs representing a progression on their previous NDCs (UNFCCC 2015a; Bodansky et al. 2017b), and (2) an 'enhanced transparency framework' that places extensive informational demands on Parties, tailored to capacities, and establishes review processes to enable tracking of progress towards achievement of NDCs (Oberthur and Bodle 2016). In contrast to the Kyoto Protocol\"),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 702.0, 'num_tokens': 227.0, 'num_tokens_approx': 173.0, 'num_words': 130.0, 'page_number': 2008, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'demand-side measures* 122, 527-535, 528, ', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': 'References', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.501794696, 'content': 'biochar 790 carbon pricing policies 1385 energy efficiency 1387 fossil fuel subsidy removal 1387 illustrative pathways (IP) 309, 312 institutions and governance 1358 international aviation and shipping 1506-1508 international cooperation 1467, 1506-1508 Kyoto Protocol 1475 legislation for 1361-1363, 1362 market mechanisms 1359 models/modelling methods 1856 net zero targets 1407-1408 Paris Agreement 1467, 1476-1477 policy attribution 1479-1481 targets 1460 voluntary for offset credits 1386 regional contributions 9, 10-11 reporting 239 residual emissions 268-269, 268, 671, 692-693 scenarios 21-23 sectoral 6, 8, 194 sectoral contributions 247-254, 248, 249, 250, 252, 253'}, page_content='biochar 790 carbon pricing policies 1385 energy efficiency 1387 fossil fuel subsidy removal 1387 illustrative pathways (IP) 309, 312 institutions and governance 1358 international aviation and shipping 1506-1508 international cooperation 1467, 1506-1508 Kyoto Protocol 1475 legislation for 1361-1363, 1362 market mechanisms 1359 models/modelling methods 1856 net zero targets 1407-1408 Paris Agreement 1467, 1476-1477 policy attribution 1479-1481 targets 1460 voluntary for offset credits 1386 regional contributions 9, 10-11 reporting 239 residual emissions 268-269, 268, 671, 692-693 scenarios 21-23 sectoral 6, 8, 194 sectoral contributions 247-254, 248, 249, 250, 252, 253'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document2', 'document_number': 2.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2409.0, 'name': 'Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 725.0, 'num_tokens': 225.0, 'num_tokens_approx': 197.0, 'num_words': 148.0, 'page_number': 695, 'release_date': 2021.0, 'report_type': 'Full Report', 'section_header': 'Remaining Carbon Budgets to Climate Stabilization', 'short_name': 'IPCC AR6 WGI FR', 'source': 'IPCC', 'toc_level0': '5: Global Carbon and Other Biogeochemical Cycles and Feedbacks', 'toc_level1': 'Executive Summary', 'toc_level2': 'Climate Change Commitment and Change Beyond 2100', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf', 'similarity_score': 0.501357496, 'content': 'Mitigation requirements over this century for limiting maximum warming to specific levels can be quantified using a carbon budget that relates cumulative CO2 emissions to global mean temperature increase (high confidence). For the period 1850-2019, a total of 655 +- 65 PgC (2390 +- 240 GtCO2, likely range) of anthropogenic CO2 has been emitted. Remaining carbon budgets (starting from 1 January 2020) for limiting warming to 1.5degC, 1.7degC, and 2.0degC are 140 PgC (500 GtCO2), 230 PgC (850 GtCO2) and 370 PgC (1350 GtCO2), respectively, based on the 50th percentile of TCRE. For the 67th percentile, the respective values are 110 PgC (400 GtCO2), 190 PgC (700 GtCO2) and 310 PgC (1150 GtCO2). These'}, page_content='Mitigation requirements over this century for limiting maximum warming to specific levels can be quantified using a carbon budget that relates cumulative CO2 emissions to global mean temperature increase (high confidence). For the period 1850-2019, a total of 655 +- 65 PgC (2390 +- 240 GtCO2, likely range) of anthropogenic CO2 has been emitted. Remaining carbon budgets (starting from 1 January 2020) for limiting warming to 1.5degC, 1.7degC, and 2.0degC are 140 PgC (500 GtCO2), 230 PgC (850 GtCO2) and 370 PgC (1350 GtCO2), respectively, based on the 50th percentile of TCRE. For the 67th percentile, the respective values are 110 PgC (400 GtCO2), 190 PgC (700 GtCO2) and 310 PgC (1150 GtCO2). These'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 567.0, 'num_tokens': 211.0, 'num_tokens_approx': 178.0, 'num_words': 134.0, 'page_number': 2029, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Indexindex\\n\\x0c', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': 'References', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.501089036, 'content': 'see also Nationally Determined Contributions (NDCs) Paris Committee on Capacity-building (PCCB) 1687 participatory governance* 461-462, 525, 556, 564, 1304, 1406 particulate matter (PM)* 441, 873, 1077, 1491, 1740 path dependence* 188, 350-351, 696, 697-698, 1767 pathways* 17-37, 156, 174 accelerated action 298, 356-358, 357 accelerating sustainable transitions 1739-1742 carbon dioxide removal (CDR) in 24-25 climate-resilient pathways* 1401, 1757, 1758 cross-sector linkages 336-341 following NDCs 298, 327, 349, 351, 352, 353, 355-356, 358'}, page_content='see also Nationally Determined Contributions (NDCs) Paris Committee on Capacity-building (PCCB) 1687 participatory governance* 461-462, 525, 556, 564, 1304, 1406 particulate matter (PM)* 441, 873, 1077, 1491, 1740 path dependence* 188, 350-351, 696, 697-698, 1767 pathways* 17-37, 156, 174 accelerated action 298, 356-358, 357 accelerating sustainable transitions 1739-1742 carbon dioxide removal (CDR) in 24-25 climate-resilient pathways* 1401, 1757, 1758 cross-sector linkages 336-341 following NDCs 298, 327, 349, 351, 352, 353, 355-356, 358'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document2', 'document_number': 2.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2409.0, 'name': 'Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 1239.0, 'num_tokens': 216.0, 'num_tokens_approx': 242.0, 'num_words': 182.0, 'page_number': 1972, 'release_date': 2021.0, 'report_type': 'Full Report', 'section_header': 'Atlas.2.3 Accessibility, Reproducibility and \\r\\nReusability (FAIR Principles)', 'short_name': 'IPCC AR6 WGI FR', 'source': 'IPCC', 'toc_level0': 'Atlas', 'toc_level1': 'Atlas.2 The Online ‘Interactive Atlas’', 'toc_level2': 'Atlas.2.3 Accessibility, Reproducibility and Reusability (FAIR Principles)', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf', 'similarity_score': 0.500684083, 'content': \"Figure Atlas.10 | Schematic representation of the Interactive Atlas workflow, from database description, subsetting and data transformation to final graphical product generation (maps and plots). Product-dependent workflow steps are depicted with dashed borders. METACLIP specifically considers the different intermediate steps consisting of various data transformations, bias adjustment, climate index calculation and graphical product generation, providing a semantic description of each stage and the different elements involved. The different controlled vocabularies describing each stage are indicated by the colours, with gradients indicating several vocabularies involved, usually meaning that specific individual instances are defined in 'ipcc_terms' extending generic classes of 'datasource'. These two vocabularies, dealing with the primary data sources have specific annotation properties linking their own features with the CMIP5, CMIP6 and CORDEX Data Reference Syntax, taking as reference their respective controlled vocabularies. All products generated by the Interactive Atlas provide a METACLIP provenance description, including a persistent link to a reproducible source code under version control.\\n19551955\"}, page_content=\"Figure Atlas.10 | Schematic representation of the Interactive Atlas workflow, from database description, subsetting and data transformation to final graphical product generation (maps and plots). Product-dependent workflow steps are depicted with dashed borders. METACLIP specifically considers the different intermediate steps consisting of various data transformations, bias adjustment, climate index calculation and graphical product generation, providing a semantic description of each stage and the different elements involved. The different controlled vocabularies describing each stage are indicated by the colours, with gradients indicating several vocabularies involved, usually meaning that specific individual instances are defined in 'ipcc_terms' extending generic classes of 'datasource'. These two vocabularies, dealing with the primary data sources have specific annotation properties linking their own features with the CMIP5, CMIP6 and CORDEX Data Reference Syntax, taking as reference their respective controlled vocabularies. All products generated by the Interactive Atlas provide a METACLIP provenance description, including a persistent link to a reproducible source code under version control.\\n19551955\"),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document2', 'document_number': 2.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2409.0, 'name': 'Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 708.0, 'num_tokens': 184.0, 'num_tokens_approx': 198.0, 'num_words': 149.0, 'page_number': 2237, 'release_date': 2021.0, 'report_type': 'Full Report', 'section_header': 'Canopy temperature The temperature within the canopy of \\r\\na vegetation structure.', 'short_name': 'IPCC AR6 WGI FR', 'source': 'IPCC', 'toc_level0': 'Annex VII: Glossary', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf', 'similarity_score': 0.500672281, 'content': 'Carbon cycle The flow of carbon (in various forms, e.g., as carbon dioxide (CO2), carbon in biomass, and carbon dissolved in the ocean as carbonate and bicarbonate) through the atmosphere, hydrosphere, terrestrial and marine biosphere and lithosphere. In this report, the reference unit for the global carbon cycle is GtCO2 or GtC (one Gigatonne = 1 Gt = 1015 grams; 1 GtC corresponds to 3.664 GtCO2). See also Ocean carbon cycle.\\nCarbon dioxide (CO2) A naturally occurring gas, CO2 is also a by-product of burning fossil fuels (such as oil, gas and coal), of burning biomass, of land-use change (LUC) and of industrial processes (e.g., cement production). It is the principal anthropogenic'}, page_content='Carbon cycle The flow of carbon (in various forms, e.g., as carbon dioxide (CO2), carbon in biomass, and carbon dissolved in the ocean as carbonate and bicarbonate) through the atmosphere, hydrosphere, terrestrial and marine biosphere and lithosphere. In this report, the reference unit for the global carbon cycle is GtCO2 or GtC (one Gigatonne = 1 Gt = 1015 grams; 1 GtC corresponds to 3.664 GtCO2). See also Ocean carbon cycle.\\nCarbon dioxide (CO2) A naturally occurring gas, CO2 is also a by-product of burning fossil fuels (such as oil, gas and coal), of burning biomass, of land-use change (LUC) and of industrial processes (e.g., cement production). It is the principal anthropogenic'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 345.0, 'num_tokens': 111.0, 'num_tokens_approx': 112.0, 'num_words': 84.0, 'page_number': 36, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Box SPM.1 | Assessment of Modelled Global Emission Scenarios', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '_Hlk99447836', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.499774247, 'content': 'C.2.1 Modelled global pathways limiting warming to 1.5degC (>50%) with no or limited overshoot are associated with projected cumulative net CO2 emissions50 until the time of net zero CO2 of 510 [330-710] GtCO2. Pathways limiting warming to 2degC (>67%) are associated with 890 [640-1160] GtCO2 (Table SPM.2). (high confidence) {3.3, Box 3.4}'}, page_content='C.2.1 Modelled global pathways limiting warming to 1.5degC (>50%) with no or limited overshoot are associated with projected cumulative net CO2 emissions50 until the time of net zero CO2 of 510 [330-710] GtCO2. Pathways limiting warming to 2degC (>67%) are associated with 890 [640-1160] GtCO2 (Table SPM.2). (high confidence) {3.3, Box 3.4}'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 647.0, 'num_tokens': 219.0, 'num_tokens_approx': 228.0, 'num_words': 171.0, 'page_number': 1429, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'National and Sub-national Policies and Institutions', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': 'References', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.499582261, 'content': 'Bataille, C. et al., 2018a: a review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. J. Clean. Prod., 187, 960-973, doi:10.1016/j.jclepro.2018.03.107. Bataille, C., C. Guivarch, S. Hallegatte, J. Rogelj, and H. Waisman, 2018b: Carbon prices across countries. Nat. Clim. Change, 8, 648-650, doi:10.1038/s41558-018-0239-1. Bataille, C.G.F., 2020: Physical and policy pathways to net-zero emissions industry. WIREs Clim. Change, 11(2), e633, doi:10.1002/wcc.633. Batstrand, S., 2015: More than Markets: a Comparative Study of Nine'}, page_content='Bataille, C. et al., 2018a: a review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. J. Clean. Prod., 187, 960-973, doi:10.1016/j.jclepro.2018.03.107. Bataille, C., C. Guivarch, S. Hallegatte, J. Rogelj, and H. Waisman, 2018b: Carbon prices across countries. Nat. Clim. Change, 8, 648-650, doi:10.1038/s41558-018-0239-1. Bataille, C.G.F., 2020: Physical and policy pathways to net-zero emissions industry. WIREs Clim. Change, 11(2), e633, doi:10.1002/wcc.633. Batstrand, S., 2015: More than Markets: a Comparative Study of Nine'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 372.0, 'num_tokens': 89.0, 'num_tokens_approx': 88.0, 'num_words': 66.0, 'page_number': 1666, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Innovation, Technology Development and Transfer', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '16.2 Elements, Drivers and Modelling of\\xa0Technology Innovation', 'toc_level1': 'Cross-Chapter Box\\xa011 |\\xa0Digitalisation: Efficiency Potentials and Governance Considerations', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.49823752, 'content': 'Cross-Chapter Box 11, Table 1 | Selected sector approaches for reducing GHG emissions that are supported by new digital technologies. Contributions of digitalisation include a) supporting role (+), b) necessary role in mix of tools (++), c) necessary unique contribution (+++), but digitalisation may also increase emissions (-). (Chapters 5, 8, 9 and 11).\\n16531055'}, page_content='Cross-Chapter Box 11, Table 1 | Selected sector approaches for reducing GHG emissions that are supported by new digital technologies. Contributions of digitalisation include a) supporting role (+), b) necessary role in mix of tools (++), c) necessary unique contribution (+++), but digitalisation may also increase emissions (-). (Chapters 5, 8, 9 and 11).\\n16531055'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 567.0, 'num_tokens': 135.0, 'num_tokens_approx': 156.0, 'num_words': 117.0, 'page_number': 771, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'h\\r\\n For assessment of cross-sector fluxes related to the food sector, see Chapter 12.', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '7.2 Historical and Current Trends in GHG Emission and Removals; Their Uncertainties and Implications for Assessing Collective Climate Progress', 'toc_level1': '7.2.2 Flux of CO2 from AFOLU, and the Non-anthropogenic Land Sink', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.49778223, 'content': 'regrowth of forests following wood harvest or abandonment of agriculture, grassland management, agricultural management. Emissions from peat burning and draining are added from external datasets (see text). Both the DGVM and bookkeeping global data is available at: https://www.icos-cp.eu/science-and-impact/global-carbon-budget/2020 (accessed on 4 October 2021). Data consistent with IPCC AR6 WGI Chapter 5. Dotted lines denote the linear regression from 2000 to 2019. Trends are statistically significant (P <0.05) with exception for the NGHGI trend (P <0.01).'}, page_content='regrowth of forests following wood harvest or abandonment of agriculture, grassland management, agricultural management. Emissions from peat burning and draining are added from external datasets (see text). Both the DGVM and bookkeeping global data is available at: https://www.icos-cp.eu/science-and-impact/global-carbon-budget/2020 (accessed on 4 October 2021). Data consistent with IPCC AR6 WGI Chapter 5. Dotted lines denote the linear regression from 2000 to 2019. Trends are statistically significant (P <0.05) with exception for the NGHGI trend (P <0.01).'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 783.0, 'num_tokens': 198.0, 'num_tokens_approx': 216.0, 'num_words': 162.0, 'page_number': 332, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Cumulative CO2 emissions and temperature goals', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '3.3 Emission Pathways, Including Socio-economic, Carbon Budget and Climate Responses Uncertainties', 'toc_level1': 'Box\\xa03.3 | The Likelihood of High-end Emissions Scenarios', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.497723401, 'content': 'substantial for stringent warming limits. For 1.5degC pathways, variations in non-CO2 warming across different emission scenarios have been found to vary the remaining carbon budget by approximately 220 GtCO2 (AR6 WGI Chapter 5, Section 5.5.2.2). In addition to reaching net zero CO2 emissions, a strong reduction in methane emissions is the most critical component in non-CO2 mitigation to keep the Paris climate goals in reach (Collins et al. 2018; van Vuuren et al. 2018) (see also AR6 WGI, Chapters 5, 6 and 7). It should be noted that the temperature categories (C1-C7) generally aligned with the horizontal axis, except for the end\\x02of-century values for C1 and C2 that coincide.\\n Cumulative CO2 emissions and temperature goals '}, page_content='substantial for stringent warming limits. For 1.5degC pathways, variations in non-CO2 warming across different emission scenarios have been found to vary the remaining carbon budget by approximately 220 GtCO2 (AR6 WGI Chapter 5, Section 5.5.2.2). In addition to reaching net zero CO2 emissions, a strong reduction in methane emissions is the most critical component in non-CO2 mitigation to keep the Paris climate goals in reach (Collins et al. 2018; van Vuuren et al. 2018) (see also AR6 WGI, Chapters 5, 6 and 7). It should be noted that the temperature categories (C1-C7) generally aligned with the horizontal axis, except for the end\\x02of-century values for C1 and C2 that coincide.\\n Cumulative CO2 emissions and temperature goals '),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 471.0, 'num_tokens': 105.0, 'num_tokens_approx': 109.0, 'num_words': 82.0, 'page_number': 523, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Demand, Services and Social Aspects of Mitigation ', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '5.1 Introduction', 'toc_level1': 'Box\\xa05.1 | Bibliometric Foundation of Demand-side Climate Change Mitigation', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.497199416, 'content': 'with social change to integrate Improving ways of living, Shifting modalities and Avoiding certain kinds of emissions altogether (Section 5.6).\\nSocial practice theory emphasises that material stocks and social relations are key in forming and maintaining habits (Reckwitz 2002; Haberl et al. 2021). This chapter reflects these insights by assessing the role of infrastructures and social norms in GHG emission-intensive or low-carbon lifestyles (Section 5.4).'}, page_content='with social change to integrate Improving ways of living, Shifting modalities and Avoiding certain kinds of emissions altogether (Section 5.6).\\nSocial practice theory emphasises that material stocks and social relations are key in forming and maintaining habits (Reckwitz 2002; Haberl et al. 2021). This chapter reflects these insights by assessing the role of infrastructures and social norms in GHG emission-intensive or low-carbon lifestyles (Section 5.4).'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 493.0, 'num_tokens': 120.0, 'num_tokens_approx': 125.0, 'num_words': 94.0, 'page_number': 1822, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Multi-level governance See Governance.', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '_Hlk111724995', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.495357603, 'content': 'Note 2: Under the Paris Rulebook (Decision 18/CMA.1, annex, paragraph 37), parties have agreed to use GWP100 values from the IPCC AR5 or GWP100 values from a subsequent IPCC Assessment Report to report aggregate emissions and removals of GHGs. In addition, parties may use other metrics to report supplemental information on aggregate emissions and removals of GHGs.]\\nSee also Greenhouse gas neutrality, Net-zero CO2 emissions, and Land use, land-use change and forestry (LULUCF).'}, page_content='Note 2: Under the Paris Rulebook (Decision 18/CMA.1, annex, paragraph 37), parties have agreed to use GWP100 values from the IPCC AR5 or GWP100 values from a subsequent IPCC Assessment Report to report aggregate emissions and removals of GHGs. In addition, parties may use other metrics to report supplemental information on aggregate emissions and removals of GHGs.]\\nSee also Greenhouse gas neutrality, Net-zero CO2 emissions, and Land use, land-use change and forestry (LULUCF).'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document2', 'document_number': 2.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2409.0, 'name': 'Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 745.0, 'num_tokens': 231.0, 'num_tokens_approx': 241.0, 'num_words': 181.0, 'page_number': 796, 'release_date': 2021.0, 'report_type': 'Full Report', 'section_header': 'References', 'short_name': 'IPCC AR6 WGI FR', 'source': 'IPCC', 'toc_level0': '5: Global Carbon and Other Biogeochemical Cycles and Feedbacks', 'toc_level1': 'References', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf', 'similarity_score': 0.4952043, 'content': 'Allen, G.H. and T.M. Pavelsky, 2018: Global extent of rivers and streams. Science, 361(6402), 585-588, doi:10.1126/science.aat0636. Allen, M.R. et al., 2009: Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature, 458(7242), 1163-1166, doi:10.1038/nature08019. Allen, M.R. et al., 2018: Framing and Context. In: Global Warming of 1.5degC. An IPCC Special Report on the impacts of global warming of 1.5degC above pre\\x02industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Portner, D. Roberts, J. Skea,'}, page_content='Allen, G.H. and T.M. Pavelsky, 2018: Global extent of rivers and streams. Science, 361(6402), 585-588, doi:10.1126/science.aat0636. Allen, M.R. et al., 2009: Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature, 458(7242), 1163-1166, doi:10.1038/nature08019. Allen, M.R. et al., 2018: Framing and Context. In: Global Warming of 1.5degC. An IPCC Special Report on the impacts of global warming of 1.5degC above pre\\x02industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Portner, D. Roberts, J. Skea,'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 1016.0, 'num_tokens': 233.0, 'num_tokens_approx': 266.0, 'num_words': 200.0, 'page_number': 437, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Introduction', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '4.2 Accelerating Mitigation Actions Across Scales', 'toc_level1': 'Cross-Chapter Box\\xa04\\xa0| Comparison of NDCs and current policies with the 2030 GHG Emissions from Long-term Temperature Pathways', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.495102525, 'content': \"Introduction\\nThe Paris Agreement (PA) sets a long-term goal of holding the increase of global average temperature to 'well below 2degC above pre\\x02industrial levels' and pursuing efforts to limit the temperature increase to 1.5degC above pre-industrial levels. This is underpinned by the 'aim to reach global peaking of greenhouse gas emissions as soon as possible' and 'achieve a balance between anthropogenic emissions by sources and removals by sinks of GHG in the second half of this century' (UNFCCC 2015a). The PA adopts a bottom-up approach in which countries determine their contribution to reach the PA's long-term goal. These national targets, plans and measures are called 'nationally determined contributions' or NDCs.\\n Introduction \\n\\nCross-Chapter Box 4, Figure 1 | Global GHG emissions of modelled pathways (funnels in Panel a, and associated bars in Panels b, c, d) and projected emission outcomes from near-term policy assessments for 2030 (Panel b).\\n424424\"}, page_content=\"Introduction\\nThe Paris Agreement (PA) sets a long-term goal of holding the increase of global average temperature to 'well below 2degC above pre\\x02industrial levels' and pursuing efforts to limit the temperature increase to 1.5degC above pre-industrial levels. This is underpinned by the 'aim to reach global peaking of greenhouse gas emissions as soon as possible' and 'achieve a balance between anthropogenic emissions by sources and removals by sinks of GHG in the second half of this century' (UNFCCC 2015a). The PA adopts a bottom-up approach in which countries determine their contribution to reach the PA's long-term goal. These national targets, plans and measures are called 'nationally determined contributions' or NDCs.\\n Introduction \\n\\nCross-Chapter Box 4, Figure 1 | Global GHG emissions of modelled pathways (funnels in Panel a, and associated bars in Panels b, c, d) and projected emission outcomes from near-term policy assessments for 2030 (Panel b).\\n424424\"),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 1023.0, 'num_tokens': 229.0, 'num_tokens_approx': 258.0, 'num_words': 194.0, 'page_number': 69, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'TS.2 The Changed Global Context, Signs \\r\\nof Progress and Continuing Challenges', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': 'TS.2 The Changed Global Context, Signs of Progress and Continuing Challenges', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.494557917, 'content': \"Figure TS.1 | Sustainable development pathways towards fulfilling the Sustainable Development Goals. The graph shows global average per-capita GHG emissions (vertical axis) and relative 'Historic Index of Human Development' (HIHD) levels (horizonal) have increased globally since the industrial revolution (grey line). The bubbles on the graph show regional per-capita GHG emissions and human development levels in the year 2015, illustrating large disparities. Pathways towards fulfilling the Paris Agreement (and SDG 13) involve global average per-capita GHG emissions below about 5 tCO2-eq by 2030. Likewise, to fulfil SDGs 3, 4 and 8, HIHD levels (see footnote 7 in Chapter 1) need to be at least 0.5 or greater. This suggests a 'sustainable development zone' for year 2030 (in pale brown); the in-figure text also suggests a 'sustainable development corridor', where countries limit per-capita GHG emissions while improving levels of human development over time. The emphasis of pathways into the sustainable\"}, page_content=\"Figure TS.1 | Sustainable development pathways towards fulfilling the Sustainable Development Goals. The graph shows global average per-capita GHG emissions (vertical axis) and relative 'Historic Index of Human Development' (HIHD) levels (horizonal) have increased globally since the industrial revolution (grey line). The bubbles on the graph show regional per-capita GHG emissions and human development levels in the year 2015, illustrating large disparities. Pathways towards fulfilling the Paris Agreement (and SDG 13) involve global average per-capita GHG emissions below about 5 tCO2-eq by 2030. Likewise, to fulfil SDGs 3, 4 and 8, HIHD levels (see footnote 7 in Chapter 1) need to be at least 0.5 or greater. This suggests a 'sustainable development zone' for year 2030 (in pale brown); the in-figure text also suggests a 'sustainable development corridor', where countries limit per-capita GHG emissions while improving levels of human development over time. The emphasis of pathways into the sustainable\"),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document8', 'document_number': 8.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 102.0, 'name': 'Technical Summary. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 1023.0, 'num_tokens': 229.0, 'num_tokens_approx': 258.0, 'num_words': 194.0, 'page_number': 10, 'release_date': 2022.0, 'report_type': 'TS', 'section_header': 'TS.2 The Changed Global Context, Signs \\r\\nof Progress and Continuing Challenges', 'short_name': 'IPCC AR6 WGIII TS', 'source': 'IPCC', 'toc_level0': 'N/A', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_TechnicalSummary.pdf', 'similarity_score': 0.494557917, 'content': \"Figure TS.1 | Sustainable development pathways towards fulfilling the Sustainable Development Goals. The graph shows global average per-capita GHG emissions (vertical axis) and relative 'Historic Index of Human Development' (HIHD) levels (horizonal) have increased globally since the industrial revolution (grey line). The bubbles on the graph show regional per-capita GHG emissions and human development levels in the year 2015, illustrating large disparities. Pathways towards fulfilling the Paris Agreement (and SDG 13) involve global average per-capita GHG emissions below about 5 tCO2-eq by 2030. Likewise, to fulfil SDGs 3, 4 and 8, HIHD levels (see footnote 7 in Chapter 1) need to be at least 0.5 or greater. This suggests a 'sustainable development zone' for year 2030 (in pale brown); the in-figure text also suggests a 'sustainable development corridor', where countries limit per-capita GHG emissions while improving levels of human development over time. The emphasis of pathways into the sustainable\"}, page_content=\"Figure TS.1 | Sustainable development pathways towards fulfilling the Sustainable Development Goals. The graph shows global average per-capita GHG emissions (vertical axis) and relative 'Historic Index of Human Development' (HIHD) levels (horizonal) have increased globally since the industrial revolution (grey line). The bubbles on the graph show regional per-capita GHG emissions and human development levels in the year 2015, illustrating large disparities. Pathways towards fulfilling the Paris Agreement (and SDG 13) involve global average per-capita GHG emissions below about 5 tCO2-eq by 2030. Likewise, to fulfil SDGs 3, 4 and 8, HIHD levels (see footnote 7 in Chapter 1) need to be at least 0.5 or greater. This suggests a 'sustainable development zone' for year 2030 (in pale brown); the in-figure text also suggests a 'sustainable development corridor', where countries limit per-capita GHG emissions while improving levels of human development over time. The emphasis of pathways into the sustainable\"),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 488.0, 'num_tokens': 104.0, 'num_tokens_approx': 117.0, 'num_words': 88.0, 'page_number': 312, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Mitigation Pathways Compatible with Long-term Goals ', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': 'Executive Summary', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.493661374, 'content': 'Stringent emissions reductions at the level required for 2degC (>67%) or lower are achieved through increased direct electrification of buildings, transport, and industry, resulting in increased electricity generation in all pathways (high confidence). Nearly all electricity in pathways limiting warming to 2degC (>67%) or lower is from low- or no-carbon technologies, with different shares of nuclear, biomass, non-biomass renewables, and fossil CCS across pathways. {3.4}'}, page_content='Stringent emissions reductions at the level required for 2degC (>67%) or lower are achieved through increased direct electrification of buildings, transport, and industry, resulting in increased electricity generation in all pathways (high confidence). Nearly all electricity in pathways limiting warming to 2degC (>67%) or lower is from low- or no-carbon technologies, with different shares of nuclear, biomass, non-biomass renewables, and fossil CCS across pathways. {3.4}'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document5', 'document_number': 5.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 84.0, 'name': 'Technical Summary. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of the WGII to the AR6 of the IPCC', 'num_characters': 482.0, 'num_tokens': 202.0, 'num_tokens_approx': 236.0, 'num_words': 177.0, 'page_number': 61, 'release_date': 2022.0, 'report_type': 'TS', 'section_header': 'Health, well-being, migration and displacement', 'short_name': 'IPCC AR6 WGII TS', 'source': 'IPCC', 'toc_level0': 'TS.D Contribution of Adaptation to Solutions', 'toc_level1': 'Adaptation progress and gaps', 'toc_level2': 'Health, well-being, migration and displacement', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_TechnicalSummary.pdf', 'similarity_score': 0.49267152, 'content': 'adaptation of social infrastructure (e.g., community facilities, services and networks) and failure to address complex interconnected risks for example in the food-energy-water-health nexus or the inter\\x02relationships of air quality and climate risk (medium confidence). {2.6.7, 4.6.4, 4.7.1, 5.12.5, 5.14.1, 6.3.1, 6.4.3, 6.4.5, 6.4.5, 6.4.5, 7.4.2, 9.10.3, 10.4.7, 11.3.6, 12.5.6, Table 12.9, 13.7.2, Figure 13.25, 14.5.6, Table 14.5, CCB GENDER, CCB HEALTH, CCB NATURAL}'}, page_content='adaptation of social infrastructure (e.g., community facilities, services and networks) and failure to address complex interconnected risks for example in the food-energy-water-health nexus or the inter\\x02relationships of air quality and climate risk (medium confidence). {2.6.7, 4.6.4, 4.7.1, 5.12.5, 5.14.1, 6.3.1, 6.4.3, 6.4.5, 6.4.5, 6.4.5, 7.4.2, 9.10.3, 10.4.7, 11.3.6, 12.5.6, Table 12.9, 13.7.2, Figure 13.25, 14.5.6, Table 14.5, CCB GENDER, CCB HEALTH, CCB NATURAL}'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document6', 'document_number': 6.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 3068.0, 'name': 'Full Report. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of the WGII to the AR6 of the IPCC', 'num_characters': 482.0, 'num_tokens': 202.0, 'num_tokens_approx': 236.0, 'num_words': 177.0, 'page_number': 107, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Health, well-being, migration and displacement', 'short_name': 'IPCC AR6 WGII FR', 'source': 'IPCC', 'toc_level0': 'Technical Summary ', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg2/IPCC_AR6_WGII_FullReport.pdf', 'similarity_score': 0.49267152, 'content': 'adaptation of social infrastructure (e.g., community facilities, services and networks) and failure to address complex interconnected risks for example in the food-energy-water-health nexus or the inter\\x02relationships of air quality and climate risk (medium confidence). {2.6.7, 4.6.4, 4.7.1, 5.12.5, 5.14.1, 6.3.1, 6.4.3, 6.4.5, 6.4.5, 6.4.5, 7.4.2, 9.10.3, 10.4.7, 11.3.6, 12.5.6, Table 12.9, 13.7.2, Figure 13.25, 14.5.6, Table 14.5, CCB GENDER, CCB HEALTH, CCB NATURAL}'}, page_content='adaptation of social infrastructure (e.g., community facilities, services and networks) and failure to address complex interconnected risks for example in the food-energy-water-health nexus or the inter\\x02relationships of air quality and climate risk (medium confidence). {2.6.7, 4.6.4, 4.7.1, 5.12.5, 5.14.1, 6.3.1, 6.4.3, 6.4.5, 6.4.5, 6.4.5, 7.4.2, 9.10.3, 10.4.7, 11.3.6, 12.5.6, Table 12.9, 13.7.2, Figure 13.25, 14.5.6, Table 14.5, CCB GENDER, CCB HEALTH, CCB NATURAL}'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document22', 'document_number': 22.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 28.0, 'name': 'Annex I: Glossary In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate', 'num_characters': 796.0, 'num_tokens': 206.0, 'num_tokens_approx': 217.0, 'num_words': 163.0, 'page_number': 6, 'release_date': 2019.0, 'report_type': 'Special Report', 'section_header': 'Biomass Biomass\\n\\x0c', 'short_name': 'IPCC SR OC A1 G', 'source': 'IPCC', 'toc_level0': 'N/A', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/10_SROCC_AnnexI-Glossary_FINAL.pdf', 'similarity_score': 0.49226135, 'content': 'Biomass Biomass\\n\\x0c\\nOrganic material excluding the material that is fossilised or embed\\x02ded in geological formations. Biomass may refer to the mass of organic matter in a specific area (ISO, 2014).\\n Biomass Biomass\\n\\x0c \\n\\nCarbon cycle \\nThe flow of carbon (in various forms, e.g., as carbon dioxide (CO2 ), carbon in biomass, and carbon dissolved in the ocean as carbonate and bicarbonate) through the atmosphere, hydrosphere, ocean, terrestrial and marine biosphere and lithosphere. In this Special Report, the refer\\x02ence unit for the global carbon cycle is GtCO2 or GtC (one Gigatonne = 1 Gt = 1015 grams; 1 GtC corresponds to 3.667 GtCO2 ). See also Atmo\\x02sphere, Blue carbon and Ocean acidification (OA).\\n Carbon cycle '}, page_content='Biomass Biomass\\n\\x0c\\nOrganic material excluding the material that is fossilised or embed\\x02ded in geological formations. Biomass may refer to the mass of organic matter in a specific area (ISO, 2014).\\n Biomass Biomass\\n\\x0c \\n\\nCarbon cycle \\nThe flow of carbon (in various forms, e.g., as carbon dioxide (CO2 ), carbon in biomass, and carbon dissolved in the ocean as carbonate and bicarbonate) through the atmosphere, hydrosphere, ocean, terrestrial and marine biosphere and lithosphere. In this Special Report, the refer\\x02ence unit for the global carbon cycle is GtCO2 or GtC (one Gigatonne = 1 Gt = 1015 grams; 1 GtC corresponds to 3.667 GtCO2 ). See also Atmo\\x02sphere, Blue carbon and Ocean acidification (OA).\\n Carbon cycle '),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 619.0, 'num_tokens': 226.0, 'num_tokens_approx': 192.0, 'num_words': 144.0, 'page_number': 2027, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Japan\\x0c', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': 'References', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.49118942, 'content': 'Paris Agreement 1465-1466 pathways and scenarios 18-20, 23-24, 23, 25, 27 remaining carbon budgets and temperature goals 320-322 renewable energy penetration and fossil fuel phase-out 1742-1744, 1743 sectoral emissions strategies 337, 339 timescales 1262-1263 timing of 322, 324, 337, 339, 352, 354 transport 1109-1110 net-zero GHG emissions* 162, 174, 191, 325, 327-329, 430-432, 431-432, 433, 435, 441, 914-915 buildings 31 carbon dioxide capture and utilisation (CCU) 1186 degree to which possible 1260 energy systems 671-672 hydrogen, role of 1184 industry 29, 1166, 1167, 1184, 1196, 1754'}, page_content='Paris Agreement 1465-1466 pathways and scenarios 18-20, 23-24, 23, 25, 27 remaining carbon budgets and temperature goals 320-322 renewable energy penetration and fossil fuel phase-out 1742-1744, 1743 sectoral emissions strategies 337, 339 timescales 1262-1263 timing of 322, 324, 337, 339, 352, 354 transport 1109-1110 net-zero GHG emissions* 162, 174, 191, 325, 327-329, 430-432, 431-432, 433, 435, 441, 914-915 buildings 31 carbon dioxide capture and utilisation (CCU) 1186 degree to which possible 1260 energy systems 671-672 hydrogen, role of 1184 industry 29, 1166, 1167, 1184, 1196, 1754'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document3', 'document_number': 3.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 112.0, 'name': 'Technical Summary. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 865.0, 'num_tokens': 198.0, 'num_tokens_approx': 226.0, 'num_words': 170.0, 'page_number': 21, 'release_date': 2021.0, 'report_type': 'TS', 'section_header': 'TS.1.3.1 Climate Change Scenarios', 'short_name': 'IPCC AR6 WGI TS', 'source': 'IPCC', 'toc_level0': 'TS.1 A Changing Climate', 'toc_level1': 'TS.1.3 Assessing Future Climate Change', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf', 'similarity_score': 0.490351677, 'content': \"Figure TS.4 | The climate change cause-effect chain: The intent of this figure is to illustrate the process chain starting from anthropogenic emissions, to changes in atmospheric concentration, to changes in Earth's energy balance ('forcing'), to changes in global climate and ultimately regional climate and climatic impact-drivers. Shown is the core set of five Shared Socio-economic Pathway (SSP) scenarios as well as emissions and concentration ranges for the previous Representative Concentration Pathway (RCP) scenarios in year 2100; carbon dioxide (CO2) emissions (GtCO2 yr-1), panel top left; methane (CH4) emissions (middle) and sulphur dioxide (SO2), nitrogen oxide (NOx) emissions (all in Mt yr-1), top right; concentrations of atmospheric CO2 (ppm) and CH4 (ppb), second row left and right; effective radiative forcing for both anthropogenic and\"}, page_content=\"Figure TS.4 | The climate change cause-effect chain: The intent of this figure is to illustrate the process chain starting from anthropogenic emissions, to changes in atmospheric concentration, to changes in Earth's energy balance ('forcing'), to changes in global climate and ultimately regional climate and climatic impact-drivers. Shown is the core set of five Shared Socio-economic Pathway (SSP) scenarios as well as emissions and concentration ranges for the previous Representative Concentration Pathway (RCP) scenarios in year 2100; carbon dioxide (CO2) emissions (GtCO2 yr-1), panel top left; methane (CH4) emissions (middle) and sulphur dioxide (SO2), nitrogen oxide (NOx) emissions (all in Mt yr-1), top right; concentrations of atmospheric CO2 (ppm) and CH4 (ppb), second row left and right; effective radiative forcing for both anthropogenic and\"),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document2', 'document_number': 2.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2409.0, 'name': 'Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 865.0, 'num_tokens': 198.0, 'num_tokens_approx': 226.0, 'num_words': 170.0, 'page_number': 70, 'release_date': 2021.0, 'report_type': 'Full Report', 'section_header': 'TS.1.3.1 Climate Change Scenarios', 'short_name': 'IPCC AR6 WGI FR', 'source': 'IPCC', 'toc_level0': 'Technical Summary', 'toc_level1': 'TS.1 A Changing Climate', 'toc_level2': 'TS.1.3 Assessing Future Climate Change', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf', 'similarity_score': 0.490351677, 'content': \"Figure TS.4 | The climate change cause-effect chain: The intent of this figure is to illustrate the process chain starting from anthropogenic emissions, to changes in atmospheric concentration, to changes in Earth's energy balance ('forcing'), to changes in global climate and ultimately regional climate and climatic impact-drivers. Shown is the core set of five Shared Socio-economic Pathway (SSP) scenarios as well as emissions and concentration ranges for the previous Representative Concentration Pathway (RCP) scenarios in year 2100; carbon dioxide (CO2) emissions (GtCO2 yr-1), panel top left; methane (CH4) emissions (middle) and sulphur dioxide (SO2), nitrogen oxide (NOx) emissions (all in Mt yr-1), top right; concentrations of atmospheric CO2 (ppm) and CH4 (ppb), second row left and right; effective radiative forcing for both anthropogenic and\"}, page_content=\"Figure TS.4 | The climate change cause-effect chain: The intent of this figure is to illustrate the process chain starting from anthropogenic emissions, to changes in atmospheric concentration, to changes in Earth's energy balance ('forcing'), to changes in global climate and ultimately regional climate and climatic impact-drivers. Shown is the core set of five Shared Socio-economic Pathway (SSP) scenarios as well as emissions and concentration ranges for the previous Representative Concentration Pathway (RCP) scenarios in year 2100; carbon dioxide (CO2) emissions (GtCO2 yr-1), panel top left; methane (CH4) emissions (middle) and sulphur dioxide (SO2), nitrogen oxide (NOx) emissions (all in Mt yr-1), top right; concentrations of atmospheric CO2 (ppm) and CH4 (ppb), second row left and right; effective radiative forcing for both anthropogenic and\"),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document6', 'document_number': 6.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 3068.0, 'name': 'Full Report. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of the WGII to the AR6 of the IPCC', 'num_characters': 809.0, 'num_tokens': 173.0, 'num_tokens_approx': 188.0, 'num_words': 141.0, 'page_number': 2919, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Emission scenario\\r\\nSee Scenario.', 'short_name': 'IPCC AR6 WGII FR', 'source': 'IPCC', 'toc_level0': 'Annexes', 'toc_level1': 'Annex II Glossary', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg2/IPCC_AR6_WGII_FullReport.pdf', 'similarity_score': 0.490338027, 'content': 'Emission scenario See Scenario.\\nEmission scenario See Scenario.\\n Emission scenario See Scenario. \\n\\nEmissionsEmissions\\n\\x0c\\nAnthropogenic emissions\\nEmissions of greenhouse gases (GHGs), precursors of GHGs and aerosols caused by human activities. These activities include the burning of fossil fuels, deforestation, land use and land-use changes (LULUC), livestock production, fertilisation, waste management and industrial processes.\\n Anthropogenic emissions \\n\\nFossil-fuel emissions\\nEmissions of greenhouse gases (in particular, carbon dioxide), other trace gases and aerosols resulting from the combustion of fuels from fossil carbon deposits such as oil, gas and coal.\\n Fossil-fuel emissions '}, page_content='Emission scenario See Scenario.\\nEmission scenario See Scenario.\\n Emission scenario See Scenario. \\n\\nEmissionsEmissions\\n\\x0c\\nAnthropogenic emissions\\nEmissions of greenhouse gases (GHGs), precursors of GHGs and aerosols caused by human activities. These activities include the burning of fossil fuels, deforestation, land use and land-use changes (LULUC), livestock production, fertilisation, waste management and industrial processes.\\n Anthropogenic emissions \\n\\nFossil-fuel emissions\\nEmissions of greenhouse gases (in particular, carbon dioxide), other trace gases and aerosols resulting from the combustion of fuels from fossil carbon deposits such as oil, gas and coal.\\n Fossil-fuel emissions '),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document2', 'document_number': 2.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2409.0, 'name': 'Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 875.0, 'num_tokens': 207.0, 'num_tokens_approx': 209.0, 'num_words': 157.0, 'page_number': 2237, 'release_date': 2021.0, 'report_type': 'Full Report', 'section_header': 'Biogeophysical potential See Mitigation potential.', 'short_name': 'IPCC AR6 WGI FR', 'source': 'IPCC', 'toc_level0': 'Annex VII: Glossary', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf', 'similarity_score': 0.49016729, 'content': 'circulation on multi-millennial scales (Mix et al., 1986), later named bipolar seesaw and applied to millennial scales (Broecker, 1998) with a similar thermohaline mechanism (Stocker and Johnsen, 2003). See also Meridional overturning circulation (MOC) and Deglacial or deglaciation or glacial termination.\\nBlack carbon (BC) A relatively pure form of carbon, also known as soot, arising from the incomplete combustion of fossil fuels, biofuel, and biomass. It only stays in the atmosphere for days or weeks. BC is a climate forcing agent with strong warming effect, both in the atmosphere and when deposited on snow or ice. See also Aerosol and Atmosphere.\\nBlocking Associated with persistent, slow-moving high-pressure systems that obstruct the prevailing westerly winds in the middle and high latitudes and the normal eastward progress of extratropical'}, page_content='circulation on multi-millennial scales (Mix et al., 1986), later named bipolar seesaw and applied to millennial scales (Broecker, 1998) with a similar thermohaline mechanism (Stocker and Johnsen, 2003). See also Meridional overturning circulation (MOC) and Deglacial or deglaciation or glacial termination.\\nBlack carbon (BC) A relatively pure form of carbon, also known as soot, arising from the incomplete combustion of fossil fuels, biofuel, and biomass. It only stays in the atmosphere for days or weeks. BC is a climate forcing agent with strong warming effect, both in the atmosphere and when deposited on snow or ice. See also Aerosol and Atmosphere.\\nBlocking Associated with persistent, slow-moving high-pressure systems that obstruct the prevailing westerly winds in the middle and high latitudes and the normal eastward progress of extratropical'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 780.0, 'num_tokens': 182.0, 'num_tokens_approx': 192.0, 'num_words': 144.0, 'page_number': 97, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Net zero CO2 and net zero GHG emissions are possible through different modelled mitigation pathways. ', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': 'TS.4 Mitigation and Development Pathways', 'toc_level1': 'Box TS.5 | Illustrative Mitigation Pathways (IMPs), and Shared Socio-economic Pathways (SSPs)', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.489677697, 'content': 'Stringent emissions reductions at the level required for 2degC or 1.5degC are achieved through the increased electrification of buildings, transport, and industry, consequently all pathways entail increased electricity generation (high confidence). Nearly all electricity in pathways limiting warming to 2degC (>67%) or 1.5degC (>50%) is also from low- or no-carbon technologies, with different shares across pathways of: nuclear, biomass, non-biomass renewables, and fossil fuels in combination with CCS. {3.4} Measures required to limit warming to 2degC (>67%) or below can result in large-scale transformation of the land surface (high confidence). These pathways are projected to reach net zero CO2 emissions in the AFOLU sector between the 2020s and 2070.'}, page_content='Stringent emissions reductions at the level required for 2degC or 1.5degC are achieved through the increased electrification of buildings, transport, and industry, consequently all pathways entail increased electricity generation (high confidence). Nearly all electricity in pathways limiting warming to 2degC (>67%) or 1.5degC (>50%) is also from low- or no-carbon technologies, with different shares across pathways of: nuclear, biomass, non-biomass renewables, and fossil fuels in combination with CCS. {3.4} Measures required to limit warming to 2degC (>67%) or below can result in large-scale transformation of the land surface (high confidence). These pathways are projected to reach net zero CO2 emissions in the AFOLU sector between the 2020s and 2070.'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document8', 'document_number': 8.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 102.0, 'name': 'Technical Summary. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 780.0, 'num_tokens': 182.0, 'num_tokens_approx': 192.0, 'num_words': 144.0, 'page_number': 38, 'release_date': 2022.0, 'report_type': 'TS', 'section_header': 'Net zero CO2 and net zero GHG emissions are possible through different modelled mitigation pathways. ', 'short_name': 'IPCC AR6 WGIII TS', 'source': 'IPCC', 'toc_level0': 'N/A', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_TechnicalSummary.pdf', 'similarity_score': 0.489677697, 'content': 'Stringent emissions reductions at the level required for 2degC or 1.5degC are achieved through the increased electrification of buildings, transport, and industry, consequently all pathways entail increased electricity generation (high confidence). Nearly all electricity in pathways limiting warming to 2degC (>67%) or 1.5degC (>50%) is also from low- or no-carbon technologies, with different shares across pathways of: nuclear, biomass, non-biomass renewables, and fossil fuels in combination with CCS. {3.4} Measures required to limit warming to 2degC (>67%) or below can result in large-scale transformation of the land surface (high confidence). These pathways are projected to reach net zero CO2 emissions in the AFOLU sector between the 2020s and 2070.'}, page_content='Stringent emissions reductions at the level required for 2degC or 1.5degC are achieved through the increased electrification of buildings, transport, and industry, consequently all pathways entail increased electricity generation (high confidence). Nearly all electricity in pathways limiting warming to 2degC (>67%) or 1.5degC (>50%) is also from low- or no-carbon technologies, with different shares across pathways of: nuclear, biomass, non-biomass renewables, and fossil fuels in combination with CCS. {3.4} Measures required to limit warming to 2degC (>67%) or below can result in large-scale transformation of the land surface (high confidence). These pathways are projected to reach net zero CO2 emissions in the AFOLU sector between the 2020s and 2070.'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 1015.0, 'num_tokens': 213.0, 'num_tokens_approx': 226.0, 'num_words': 170.0, 'page_number': 1025, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': '9.9.4 Financing Mechanisms and Business Models \\r\\nfor Reducing Energy Demand', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '9.9 Sectoral Barriers and Policies', 'toc_level1': '9.9.4 Financing Mechanisms and Business Models for\\xa0Reducing Energy Demand', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.489442825, 'content': \"Carbon finance, started under the Kyoto Protocol with the flexible mechanisms and further enhanced under the Paris Agreement (Michaelowa et al. 2019), is an activity based on 'carbon emission rights' and its derivatives (Liu et al. 2015a). Carbon finance can promote low\\x02cost emission reductions (Zhou and Li 2019). Under Emission Trading Schemes or other carbon pricing mechanisms, auctioning carbon allowances creates a new revenue stream. Revenues from auctioning could be used to finance energy efficiency projects in buildings with grants, zero interest loans or guarantees (Wiese et al. 2020).\\nCrowdfunding is a new and rapidly growing form of financial intermediation that channels funds from investors to borrowers (individuals or companies) or users of equity capital (companies) without involving traditional financial organisations such as banks (Miller and Carriveau 2018). Typically, it involves internet-based platforms that link savers directly with borrowers (European Union\"}, page_content=\"Carbon finance, started under the Kyoto Protocol with the flexible mechanisms and further enhanced under the Paris Agreement (Michaelowa et al. 2019), is an activity based on 'carbon emission rights' and its derivatives (Liu et al. 2015a). Carbon finance can promote low\\x02cost emission reductions (Zhou and Li 2019). Under Emission Trading Schemes or other carbon pricing mechanisms, auctioning carbon allowances creates a new revenue stream. Revenues from auctioning could be used to finance energy efficiency projects in buildings with grants, zero interest loans or guarantees (Wiese et al. 2020).\\nCrowdfunding is a new and rapidly growing form of financial intermediation that channels funds from investors to borrowers (individuals or companies) or users of equity capital (companies) without involving traditional financial organisations such as banks (Miller and Carriveau 2018). Typically, it involves internet-based platforms that link savers directly with borrowers (European Union\"),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 605.0, 'num_tokens': 194.0, 'num_tokens_approx': 165.0, 'num_words': 124.0, 'page_number': 2003, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Indexindex\\n\\x0c', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': 'References', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.489302039, 'content': 'cobalt 1744 collective action 506, 555, 556-557, 1765 Colombia 434, 437, 567, 815, 1376 combined global temperature change potential (CGTP) 227 committed emissions 355, 697, 919, 923, 1208-1209, 1743 communication see information and communication technology community forest management (CFM) 817-818, 817 community-wide infrastructure supply chain footprinting (CIF) 872 complex system theories 182 compressed air energy storage (CAES) 655 Computable General Equilibrium (CGE) models 1845, 1855-1856 concentrating solar power (CSP) 12, 258, 627, 630-632, 631, 633, 634, 1302-1303'}, page_content='cobalt 1744 collective action 506, 555, 556-557, 1765 Colombia 434, 437, 567, 815, 1376 combined global temperature change potential (CGTP) 227 committed emissions 355, 697, 919, 923, 1208-1209, 1743 communication see information and communication technology community forest management (CFM) 817-818, 817 community-wide infrastructure supply chain footprinting (CIF) 872 complex system theories 182 compressed air energy storage (CAES) 655 Computable General Equilibrium (CGE) models 1845, 1855-1856 concentrating solar power (CSP) 12, 258, 627, 630-632, 631, 633, 634, 1302-1303'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 508.0, 'num_tokens': 111.0, 'num_tokens_approx': 120.0, 'num_words': 90.0, 'page_number': 987, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Cooling energy demand ', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '9.3 New Developments in Emission Trends\\xa0and Drivers', 'toc_level1': 'Box\\xa09.3 | Emerging Energy Demand Trends in Residential Buildings', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.488707185, 'content': 'emissions (Campbell 2018; Shah et al. 2015, 2019; UNEP and IEA 2020). The installation of highly efficient technological solutions with low global warming potential (GWP), as part of the implementation of the Kigali amendment to the Montreal Protocol, is the second step towards reducing GHG emissions from cooling. Developing renewable energy solutions integrated to buildings is another track to follow to reduce GHG emissions from cooling. \\n Cooling energy demand '}, page_content='emissions (Campbell 2018; Shah et al. 2015, 2019; UNEP and IEA 2020). The installation of highly efficient technological solutions with low global warming potential (GWP), as part of the implementation of the Kigali amendment to the Montreal Protocol, is the second step towards reducing GHG emissions from cooling. Developing renewable energy solutions integrated to buildings is another track to follow to reduce GHG emissions from cooling. \\n Cooling energy demand '),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 1029.0, 'num_tokens': 228.0, 'num_tokens_approx': 258.0, 'num_words': 194.0, 'page_number': 192, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': '1.6.3 Climate Mitigation, Equity and the Sustainable \\r\\nDevelopment Goals (SDGs)', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '1.6 Achieving Mitigation in the Context of\\xa0Sustainable Development', 'toc_level1': '1.6.3 Climate Mitigation, Equity and the Sustainable Development Goals (SDGs)', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.488219678, 'content': \"Figure 1.6 | Sustainable development pathways towards fulfilling the Sustainable Development Goals (SDGs). The graph shows global average per-capita GHG emissions (vertical axis) and relative 'Historic Index of Human Development' (HIHD) levels (horizontal) have increased globally since the industrial revolution (grey line). The bubbles on the graph show regional per-capita GHG emissions and human development levels in the year 2015, illustrating large disparities. Pathways towards fulfilling the Paris Agreement (and SDG 13) involve global average per-capita GHG emissions below about 5 tCO2-eq by 2030. Likewise, to fulfil SDGs 3, 4 and 8, HIHD levels (see footnote 7) need to be at least 0.5 or greater. This suggests a 'sustainable development zone' for year 2030 (in pale brown); the in-figure text also suggests a 'sustainable development corridor', where countries limit per-capita GHG emissions while improving levels of human development over time. The emphasis of pathways into the sustainable development\"}, page_content=\"Figure 1.6 | Sustainable development pathways towards fulfilling the Sustainable Development Goals (SDGs). The graph shows global average per-capita GHG emissions (vertical axis) and relative 'Historic Index of Human Development' (HIHD) levels (horizontal) have increased globally since the industrial revolution (grey line). The bubbles on the graph show regional per-capita GHG emissions and human development levels in the year 2015, illustrating large disparities. Pathways towards fulfilling the Paris Agreement (and SDG 13) involve global average per-capita GHG emissions below about 5 tCO2-eq by 2030. Likewise, to fulfil SDGs 3, 4 and 8, HIHD levels (see footnote 7) need to be at least 0.5 or greater. This suggests a 'sustainable development zone' for year 2030 (in pale brown); the in-figure text also suggests a 'sustainable development corridor', where countries limit per-capita GHG emissions while improving levels of human development over time. The emphasis of pathways into the sustainable development\"),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 429.0, 'num_tokens': 128.0, 'num_tokens_approx': 109.0, 'num_words': 82.0, 'page_number': 1908, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Brown, T., J. Horsch, and D. Schlachtberger, 2018: PyPSA: Python for Power \\r\\nSystem Analysis. J. Open Res. Softw., 6, doi:10.5334/jors.188.', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': 'References', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.488059491, 'content': 'Duerinck, J. et al., 2008: Assessment and improvement of methodologies used for Greenhouse Gas projections. Vlaamse Instelling voor Technologisch Onderzoek Mol, Belgium, Oko-Institut e.V., Berlin, Germany, and Institute for European Environmental Policy, Brussels, Belgium, https://ec.europa. eu/clima/document/download/1cf69fe3-f5c6-40a0-b5f1-efb9e2b2d8df_ en?filename=assessing_methodologies_for_ghg_projections_en.pdf.'}, page_content='Duerinck, J. et al., 2008: Assessment and improvement of methodologies used for Greenhouse Gas projections. Vlaamse Instelling voor Technologisch Onderzoek Mol, Belgium, Oko-Institut e.V., Berlin, Germany, and Institute for European Environmental Policy, Brussels, Belgium, https://ec.europa. eu/clima/document/download/1cf69fe3-f5c6-40a0-b5f1-efb9e2b2d8df_ en?filename=assessing_methodologies_for_ghg_projections_en.pdf.'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 791.0, 'num_tokens': 204.0, 'num_tokens_approx': 201.0, 'num_words': 151.0, 'page_number': 281, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Emissions Trends and Drivers ', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '2.7 Emissions Associated With Existing and\\xa0Planned Long-lived Infrastructure', 'toc_level1': '2.7.3 Synthesis\\xa0– Comparison with Estimates of\\xa0Residual Fossil Fuel CO2 Emissions', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.487939537, 'content': \"Few quantifications of carbon lock-in from urban infrastructure, in particular urban form, have been attempted, in part because they also relate to behaviours that are closely tied to routines and norms that co-evolve with 'hard infrastructures' and technologies, as well as 'soft infrastructure' such as social networks and markets (Seto et al. 2016). There are some notable exceptions providing early attempts (Guivarch and Hallegatte 2011; Driscoll 2014; Seto et al.2014; Lucon et al. 2014; Erickson and Tempest 2015; Creutzig et al. 2016). Creutzig et al. (2016) attempt a synthesis of this literature and estimate the total cumulative future CO2 emissions from existing urban infrastructure at 210 Gt, and from new infrastructures at 495 Gt for the period 2010-2030.\"}, page_content=\"Few quantifications of carbon lock-in from urban infrastructure, in particular urban form, have been attempted, in part because they also relate to behaviours that are closely tied to routines and norms that co-evolve with 'hard infrastructures' and technologies, as well as 'soft infrastructure' such as social networks and markets (Seto et al. 2016). There are some notable exceptions providing early attempts (Guivarch and Hallegatte 2011; Driscoll 2014; Seto et al.2014; Lucon et al. 2014; Erickson and Tempest 2015; Creutzig et al. 2016). Creutzig et al. (2016) attempt a synthesis of this literature and estimate the total cumulative future CO2 emissions from existing urban infrastructure at 210 Gt, and from new infrastructures at 495 Gt for the period 2010-2030.\"),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document2', 'document_number': 2.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2409.0, 'name': 'Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 1140.0, 'num_tokens': 220.0, 'num_tokens_approx': 268.0, 'num_words': 201.0, 'page_number': 2261, 'release_date': 2021.0, 'report_type': 'Full Report', 'section_header': 'Gross primary production (GPP)', 'short_name': 'IPCC AR6 WGI FR', 'source': 'IPCC', 'toc_level0': 'Annex VII: Glossary', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf', 'similarity_score': 0.487916321, 'content': 'Gross primary production (GPP)\\nThe total amount of carbon fixed by photosynthesis over a specified time period.\\n Gross primary production (GPP) \\n\\nNet primary production (NPP)\\nNet primary production (NPP) The amount of carbon fixed by photosynthesis minus the amount lost by respiration over a specified time period.\\n Net primary production (NPP) \\n\\nProbability density function (PDF) A probability density function is a function that indicates the relative chances of occurrence of different outcomes of a variable. The function integrates to unity over the domain for which it is defined and has the property that the integral over a sub-domain equals the probability that the outcome of the variable lies within that sub-domain. For example, the probability that a temperature anomaly defined in a particular way is greater than zero is obtained from its PDF by integrating the PDF over all possible temperature anomalies greater than zero. Probability density functions that describe two or more variables simultaneously are similarly defined.'}, page_content='Gross primary production (GPP)\\nThe total amount of carbon fixed by photosynthesis over a specified time period.\\n Gross primary production (GPP) \\n\\nNet primary production (NPP)\\nNet primary production (NPP) The amount of carbon fixed by photosynthesis minus the amount lost by respiration over a specified time period.\\n Net primary production (NPP) \\n\\nProbability density function (PDF) A probability density function is a function that indicates the relative chances of occurrence of different outcomes of a variable. The function integrates to unity over the domain for which it is defined and has the property that the integral over a sub-domain equals the probability that the outcome of the variable lies within that sub-domain. For example, the probability that a temperature anomaly defined in a particular way is greater than zero is obtained from its PDF by integrating the PDF over all possible temperature anomalies greater than zero. Probability density functions that describe two or more variables simultaneously are similarly defined.'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document8', 'document_number': 8.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 102.0, 'name': 'Technical Summary. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 1004.0, 'num_tokens': 243.0, 'num_tokens_approx': 261.0, 'num_words': 196.0, 'page_number': 17, 'release_date': 2022.0, 'report_type': 'TS', 'section_header': 'Technical Summary', 'short_name': 'IPCC AR6 WGIII TS', 'source': 'IPCC', 'toc_level0': 'N/A', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_TechnicalSummary.pdf', 'similarity_score': 0.487734348, 'content': 'Figure TS.4 (continued): Emissions have grown in most regions, although some countries have achieved sustained emission reductions in line with 2degC scenarios. Change in regional GHG emissions and rates of change compatible with warming targets. Panel (a): Regional GHG emission trends (in GtCO2-eq yr -1 (GWP100; AR6) for the time period 1990-2019. Panel (b): Historical GHG emissions change by region (2010-2019). Circles depict countries, scaled by total emissions in 2019, short horizontal lines depict the average change by region. Also shown are global rates of reduction over the period 2020-2040 in scenarios assessed in AR6 that limit global warming to 1.5degC and 2degC with different probabilities. The 5-95th percentile range of emissions changes for scenarios below 1.5degC with no or limited overshoot (scenario category C1) and scenarios below 2degC (>67%) with immediate action (scenario category C3a) are shown as a shaded area with a horizontal line at the mean value. Panel b'}, page_content='Figure TS.4 (continued): Emissions have grown in most regions, although some countries have achieved sustained emission reductions in line with 2degC scenarios. Change in regional GHG emissions and rates of change compatible with warming targets. Panel (a): Regional GHG emission trends (in GtCO2-eq yr -1 (GWP100; AR6) for the time period 1990-2019. Panel (b): Historical GHG emissions change by region (2010-2019). Circles depict countries, scaled by total emissions in 2019, short horizontal lines depict the average change by region. Also shown are global rates of reduction over the period 2020-2040 in scenarios assessed in AR6 that limit global warming to 1.5degC and 2degC with different probabilities. The 5-95th percentile range of emissions changes for scenarios below 1.5degC with no or limited overshoot (scenario category C1) and scenarios below 2degC (>67%) with immediate action (scenario category C3a) are shown as a shaded area with a horizontal line at the mean value. Panel b'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 1004.0, 'num_tokens': 243.0, 'num_tokens_approx': 261.0, 'num_words': 196.0, 'page_number': 76, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Technical Summary', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': 'TS.3 Emission Trends and Drivers', 'toc_level1': 'Box TS.2 | Greenhouse Gas (GHG) Emission Metrics Provide Simplified Information About\\xa0the\\xa0Effects of Different Greenhouse Gases', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.487734348, 'content': 'Figure TS.4 (continued): Emissions have grown in most regions, although some countries have achieved sustained emission reductions in line with 2degC scenarios. Change in regional GHG emissions and rates of change compatible with warming targets. Panel (a): Regional GHG emission trends (in GtCO2-eq yr -1 (GWP100; AR6) for the time period 1990-2019. Panel (b): Historical GHG emissions change by region (2010-2019). Circles depict countries, scaled by total emissions in 2019, short horizontal lines depict the average change by region. Also shown are global rates of reduction over the period 2020-2040 in scenarios assessed in AR6 that limit global warming to 1.5degC and 2degC with different probabilities. The 5-95th percentile range of emissions changes for scenarios below 1.5degC with no or limited overshoot (scenario category C1) and scenarios below 2degC (>67%) with immediate action (scenario category C3a) are shown as a shaded area with a horizontal line at the mean value. Panel b'}, page_content='Figure TS.4 (continued): Emissions have grown in most regions, although some countries have achieved sustained emission reductions in line with 2degC scenarios. Change in regional GHG emissions and rates of change compatible with warming targets. Panel (a): Regional GHG emission trends (in GtCO2-eq yr -1 (GWP100; AR6) for the time period 1990-2019. Panel (b): Historical GHG emissions change by region (2010-2019). Circles depict countries, scaled by total emissions in 2019, short horizontal lines depict the average change by region. Also shown are global rates of reduction over the period 2020-2040 in scenarios assessed in AR6 that limit global warming to 1.5degC and 2degC with different probabilities. The 5-95th percentile range of emissions changes for scenarios below 1.5degC with no or limited overshoot (scenario category C1) and scenarios below 2degC (>67%) with immediate action (scenario category C3a) are shown as a shaded area with a horizontal line at the mean value. Panel b'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 907.0, 'num_tokens': 232.0, 'num_tokens_approx': 234.0, 'num_words': 176.0, 'page_number': 1809, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Blue infrastructure See Infrastructure.', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '_Hlk111724995', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.487722784, 'content': 'Carbon cycle The flow of carbon (in various forms, e.g., as carbon dioxide (CO2 ), carbon in biomass, and carbon dissolved in the ocean as carbonate and bicarbonate) through the atmosphere, hydrosphere, terrestrial and marine biosphere and lithosphere. In this report, the reference unit for the global carbon cycle is GtCO2 or GtC (one Gigatonne = 1 Gt = 1015 grams; 1GtC corresponds to 3.664 GtCO2).\\nCarbon dioxide capture and utilisation (CCU) A process in which carbon dioxide (CO2 ) is captured and the carbon then used in a product. The climate effect of CCU depends on the product lifetime, the product it displaces, and the CO2 source (fossil, biomass or atmosphere). CCU is sometimes referred to as Carbon Dioxide Capture and Use, or Carbon Capture and Utilisation. See also Anthropogenic removals, Carbon dioxide capture and storage (CCS), and Carbon dioxide removal (CDR).'}, page_content='Carbon cycle The flow of carbon (in various forms, e.g., as carbon dioxide (CO2 ), carbon in biomass, and carbon dissolved in the ocean as carbonate and bicarbonate) through the atmosphere, hydrosphere, terrestrial and marine biosphere and lithosphere. In this report, the reference unit for the global carbon cycle is GtCO2 or GtC (one Gigatonne = 1 Gt = 1015 grams; 1GtC corresponds to 3.664 GtCO2).\\nCarbon dioxide capture and utilisation (CCU) A process in which carbon dioxide (CO2 ) is captured and the carbon then used in a product. The climate effect of CCU depends on the product lifetime, the product it displaces, and the CO2 source (fossil, biomass or atmosphere). CCU is sometimes referred to as Carbon Dioxide Capture and Use, or Carbon Capture and Utilisation. See also Anthropogenic removals, Carbon dioxide capture and storage (CCS), and Carbon dioxide removal (CDR).'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document2', 'document_number': 2.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2409.0, 'name': 'Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 925.0, 'num_tokens': 232.0, 'num_tokens_approx': 257.0, 'num_words': 193.0, 'page_number': 97, 'release_date': 2021.0, 'report_type': 'Full Report', 'section_header': 'Box TS.5 | The Carbon Cycle', 'short_name': 'IPCC AR6 WGI FR', 'source': 'IPCC', 'toc_level0': 'Technical Summary', 'toc_level1': 'TS.2 Large-scale Climate Change: Mean Climate, Variability and Extremes', 'toc_level2': 'Box TS.5 | The Carbon Cycle', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf', 'similarity_score': 0.487294823, 'content': 'Based on multiple lines of evidence using interhemispheric gradients of CO2 concentrations, isotopes, and inventory data, it is unequivocal that the growth in CO2 in the atmosphere since 1750 (see Section TS.2.2) is due to the direct emissions from human activities. The combustion of fossil fuels and land-use change for the period 1750-2019 resulted in the release of 700 +- 75 PgC (likely range, 1 PgC = 1015 g of carbon) to the atmosphere, of which about 41% +- 11% remains in the atmosphere today (high confidence). Of the total anthropogenic CO2 emissions, the combustion of fossil fuels was responsible for about 64% +- 15%, growing to an 86% +- 14% contribution over the past 10 years. The remainder resulted from land-use change. During the last decade (2010-2019), average annual anthropogenic CO2 emissions reached the highest levels in human history at 10.9 +- 0.9 PgC yr -1 (high confidence). Of these'}, page_content='Based on multiple lines of evidence using interhemispheric gradients of CO2 concentrations, isotopes, and inventory data, it is unequivocal that the growth in CO2 in the atmosphere since 1750 (see Section TS.2.2) is due to the direct emissions from human activities. The combustion of fossil fuels and land-use change for the period 1750-2019 resulted in the release of 700 +- 75 PgC (likely range, 1 PgC = 1015 g of carbon) to the atmosphere, of which about 41% +- 11% remains in the atmosphere today (high confidence). Of the total anthropogenic CO2 emissions, the combustion of fossil fuels was responsible for about 64% +- 15%, growing to an 86% +- 14% contribution over the past 10 years. The remainder resulted from land-use change. During the last decade (2010-2019), average annual anthropogenic CO2 emissions reached the highest levels in human history at 10.9 +- 0.9 PgC yr -1 (high confidence). Of these'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document3', 'document_number': 3.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 112.0, 'name': 'Technical Summary. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 925.0, 'num_tokens': 232.0, 'num_tokens_approx': 257.0, 'num_words': 193.0, 'page_number': 48, 'release_date': 2021.0, 'report_type': 'TS', 'section_header': 'Box TS.5 | The Carbon Cycle', 'short_name': 'IPCC AR6 WGI TS', 'source': 'IPCC', 'toc_level0': 'TS.2 Large-scale Climate Change: Mean Climate, Variability and Extremes', 'toc_level1': 'Box TS.5 | The Carbon Cycle', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf', 'similarity_score': 0.487294823, 'content': 'Based on multiple lines of evidence using interhemispheric gradients of CO2 concentrations, isotopes, and inventory data, it is unequivocal that the growth in CO2 in the atmosphere since 1750 (see Section TS.2.2) is due to the direct emissions from human activities. The combustion of fossil fuels and land-use change for the period 1750-2019 resulted in the release of 700 +- 75 PgC (likely range, 1 PgC = 1015 g of carbon) to the atmosphere, of which about 41% +- 11% remains in the atmosphere today (high confidence). Of the total anthropogenic CO2 emissions, the combustion of fossil fuels was responsible for about 64% +- 15%, growing to an 86% +- 14% contribution over the past 10 years. The remainder resulted from land-use change. During the last decade (2010-2019), average annual anthropogenic CO2 emissions reached the highest levels in human history at 10.9 +- 0.9 PgC yr -1 (high confidence). Of these'}, page_content='Based on multiple lines of evidence using interhemispheric gradients of CO2 concentrations, isotopes, and inventory data, it is unequivocal that the growth in CO2 in the atmosphere since 1750 (see Section TS.2.2) is due to the direct emissions from human activities. The combustion of fossil fuels and land-use change for the period 1750-2019 resulted in the release of 700 +- 75 PgC (likely range, 1 PgC = 1015 g of carbon) to the atmosphere, of which about 41% +- 11% remains in the atmosphere today (high confidence). Of the total anthropogenic CO2 emissions, the combustion of fossil fuels was responsible for about 64% +- 15%, growing to an 86% +- 14% contribution over the past 10 years. The remainder resulted from land-use change. During the last decade (2010-2019), average annual anthropogenic CO2 emissions reached the highest levels in human history at 10.9 +- 0.9 PgC yr -1 (high confidence). Of these'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 536.0, 'num_tokens': 149.0, 'num_tokens_approx': 161.0, 'num_words': 121.0, 'page_number': 37, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Box SPM.1 | Assessment of Modelled Global Emission Scenarios', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '_Hlk99447836', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.48681885, 'content': 'to 1.5degC (>50%) after a high overshoot (C1 and C2 categories respectively). Modelled pathways that return warming to 1.5degC (>50%) after a high overshoot (C2 category) show near-term GHG emissions reductions similar to pathways that limit warming to 2degC (>67%) (C3 category). For a given peak global warming level, greater and more rapid near-term GHG emissions reductions are associated with later net zero CO2 dates. (high confidence) (Table SPM.2) {3.3, Table 3.5, Cross-Chapter Box 3 in Chapter 3, Annex I: Glossary}'}, page_content='to 1.5degC (>50%) after a high overshoot (C1 and C2 categories respectively). Modelled pathways that return warming to 1.5degC (>50%) after a high overshoot (C2 category) show near-term GHG emissions reductions similar to pathways that limit warming to 2degC (>67%) (C3 category). For a given peak global warming level, greater and more rapid near-term GHG emissions reductions are associated with later net zero CO2 dates. (high confidence) (Table SPM.2) {3.3, Table 3.5, Cross-Chapter Box 3 in Chapter 3, Annex I: Glossary}'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 1066.0, 'num_tokens': 230.0, 'num_tokens_approx': 252.0, 'num_words': 189.0, 'page_number': 1670, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': '16.2.3.4 Market Failures in Directing Technological Change', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '16.2 Elements, Drivers and Modelling of\\xa0Technology Innovation', 'toc_level1': '16.2.4 Representation of the Innovation Process in\\xa0Modelled Decarbonisation Pathways', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.486370325, 'content': '16.2.4 Representation of the Innovation Process in Modelled Decarbonisation Pathways\\n 16.2.4 Representation of the Innovation Process in Modelled Decarbonisation Pathways \\n\\n16.2.4 Representation of the Innovation Process in Modelled Decarbonisation Pathways\\nA variety of models are used to generate climate mitigation pathways, compatible with 2degC and well below 2degC targets. These include integrated assessment models (IAMs), energy system models, computable general equilibrium models, and agent based models. They range from global (Chapter 3) to national models and include both top-down and bottom-up approaches (Chapter 4). Innovation in energy technologies, which comprises the development and diffusion of low-, zero- and negative-carbon energy options, but also investments to increase energy efficiency, is a key driver of emissions reductions in model-based scenarios.\\n 16.2.4 Representation of the Innovation Process in Modelled Decarbonisation Pathways '}, page_content='16.2.4 Representation of the Innovation Process in Modelled Decarbonisation Pathways\\n 16.2.4 Representation of the Innovation Process in Modelled Decarbonisation Pathways \\n\\n16.2.4 Representation of the Innovation Process in Modelled Decarbonisation Pathways\\nA variety of models are used to generate climate mitigation pathways, compatible with 2degC and well below 2degC targets. These include integrated assessment models (IAMs), energy system models, computable general equilibrium models, and agent based models. They range from global (Chapter 3) to national models and include both top-down and bottom-up approaches (Chapter 4). Innovation in energy technologies, which comprises the development and diffusion of low-, zero- and negative-carbon energy options, but also investments to increase energy efficiency, is a key driver of emissions reductions in model-based scenarios.\\n 16.2.4 Representation of the Innovation Process in Modelled Decarbonisation Pathways '),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document2', 'document_number': 2.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2409.0, 'name': 'Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 652.0, 'num_tokens': 213.0, 'num_tokens_approx': 228.0, 'num_words': 171.0, 'page_number': 799, 'release_date': 2021.0, 'report_type': 'Full Report', 'section_header': 'References', 'short_name': 'IPCC AR6 WGI FR', 'source': 'IPCC', 'toc_level0': '5: Global Carbon and Other Biogeochemical Cycles and Feedbacks', 'toc_level1': 'References', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf', 'similarity_score': 0.486263841, 'content': 'doi:10.1038/s41467-020-16530-z. Cain, M. et al., 2019: Improved calculation of warming-equivalent emissions for short-lived climate pollutants. npj Climate and Atmospheric Science, 2, 29, doi:10.1038/s41612-019-0086-4. Caldeira, K. and M.E. Wickett, 2003: Anthropogenic carbon and ocean pH. Nature, 425(6956), 365-365, doi:10.1038/425365a. Campbell, J.E. et al., 2017: Large historical growth in global terrestrial gross primary production. Nature, 544(7648), 84-87, doi:10.1038/nature22030. Campbell, J.L., J. Sessions, D. Smith, and K. Trippe, 2018: Potential carbon storage in biochar made from logging residue: Basic principles and'}, page_content='doi:10.1038/s41467-020-16530-z. Cain, M. et al., 2019: Improved calculation of warming-equivalent emissions for short-lived climate pollutants. npj Climate and Atmospheric Science, 2, 29, doi:10.1038/s41612-019-0086-4. Caldeira, K. and M.E. Wickett, 2003: Anthropogenic carbon and ocean pH. Nature, 425(6956), 365-365, doi:10.1038/425365a. Campbell, J.E. et al., 2017: Large historical growth in global terrestrial gross primary production. Nature, 544(7648), 84-87, doi:10.1038/nature22030. Campbell, J.L., J. Sessions, D. Smith, and K. Trippe, 2018: Potential carbon storage in biochar made from logging residue: Basic principles and'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 670.0, 'num_tokens': 223.0, 'num_tokens_approx': 237.0, 'num_words': 178.0, 'page_number': 1792, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Accelerating the Transition in the Context of Sustainable Development ', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '_Hlk111724995', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.486255705, 'content': 'transactions and social ties. A case study in Northeast France. Int. J. Sustain. Dev. World Ecol., 26(1), 1-10, doi:10.1080/13504509.2018.1471012. Hanasaki, N. et al., 2013: A global water scarcity assessment under Shared Socio-economic Pathways - Part 2: Water availability and scarcity. Hydrol. Earth Syst. Sci., 17(7), 2393-2413, doi:10.5194/hess-17-2393-2013. Hansen, T. and L. Coenen, 2015: The geography of sustainability transitions: Review, synthesis and reflections on an emergent research field. Environ. Innov. Soc. Transitions, 17, 92-109, doi.org/10.1016/j.eist.2014.11.001. Hansen, U.E. and I. Nygaard, 2014: Sustainable energy transitions in'}, page_content='transactions and social ties. A case study in Northeast France. Int. J. Sustain. Dev. World Ecol., 26(1), 1-10, doi:10.1080/13504509.2018.1471012. Hanasaki, N. et al., 2013: A global water scarcity assessment under Shared Socio-economic Pathways - Part 2: Water availability and scarcity. Hydrol. Earth Syst. Sci., 17(7), 2393-2413, doi:10.5194/hess-17-2393-2013. Hansen, T. and L. Coenen, 2015: The geography of sustainability transitions: Review, synthesis and reflections on an emergent research field. Environ. Innov. Soc. Transitions, 17, 92-109, doi.org/10.1016/j.eist.2014.11.001. Hansen, U.E. and I. Nygaard, 2014: Sustainable energy transitions in'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 632.0, 'num_tokens': 182.0, 'num_tokens_approx': 193.0, 'num_words': 145.0, 'page_number': 29, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Summary for Policymakers', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '_heading=h.30j0zll', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.486132622, 'content': 'Past GHG emissions for 2010-2015 used to project global warming outcomes of the modelled pathways are shown by a black line32 and past global GHG emissions in 2015 and 2019 as assessed in Chapter 2 are shown by whiskers. Panels b, c and d show snapshots of the GHG emission ranges of the modelled pathways in 2030, 2050, and 2100, respectively. Panel b also shows projected emissions outcomes from near-term policy assessments in 2030 from Chapter 4.2 (Tables 4.2 and 4.3; median and full range). GHG emissions are in CO2-equivalent using GWP100 from AR6 WGI. {3.5, 4.2, Table 4.2, Table 4.3, Cross-Chapter Box 4 in Chapter 4}'}, page_content='Past GHG emissions for 2010-2015 used to project global warming outcomes of the modelled pathways are shown by a black line32 and past global GHG emissions in 2015 and 2019 as assessed in Chapter 2 are shown by whiskers. Panels b, c and d show snapshots of the GHG emission ranges of the modelled pathways in 2030, 2050, and 2100, respectively. Panel b also shows projected emissions outcomes from near-term policy assessments in 2030 from Chapter 4.2 (Tables 4.2 and 4.3; median and full range). GHG emissions are in CO2-equivalent using GWP100 from AR6 WGI. {3.5, 4.2, Table 4.2, Table 4.3, Cross-Chapter Box 4 in Chapter 4}'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 979.0, 'num_tokens': 199.0, 'num_tokens_approx': 228.0, 'num_words': 171.0, 'page_number': 281, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': '2.7.3 Synthesis - Comparison with Estimates \\r\\nof Residual Fossil Fuel CO2 Emissions', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '2.7 Emissions Associated With Existing and\\xa0Planned Long-lived Infrastructure', 'toc_level1': '2.7.3 Synthesis\\xa0– Comparison with Estimates of\\xa0Residual Fossil Fuel CO2 Emissions', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.485770822, 'content': \"Table 2.7 | Residual (gross) fossil fuel emissions (GtCO2) in climate change mitigation scenarios strengthening mitigation action after 2020 ('early strengthening'), compared to scenarios that keep Nationally Determined Contribution (NDC) ambition level until 2030 and only strengthen thereafter. Cumulative gross CO2 emissions from fossil fuel and industry until reaching net zero CO2 emissions are given in terms of the mean as well as minimum and maximum (in parentheses) across seven participating models: AIM/CGE, GCAM, IMAGE, MESSAGES, POLES, REMIND, WITCH. Scenario design prescribes a harmonised, global carbon price in line with long-term carbon budget. Delay scenarios follow the same price trajectory, but 10 years later. Carbon dioxide removal requirements represent ex-post calculations that subtract gross fossil fuel emissions from the carbon budget associated with the respective long-term warming limit. We take the carbon budget for limiting warming to\"}, page_content=\"Table 2.7 | Residual (gross) fossil fuel emissions (GtCO2) in climate change mitigation scenarios strengthening mitigation action after 2020 ('early strengthening'), compared to scenarios that keep Nationally Determined Contribution (NDC) ambition level until 2030 and only strengthen thereafter. Cumulative gross CO2 emissions from fossil fuel and industry until reaching net zero CO2 emissions are given in terms of the mean as well as minimum and maximum (in parentheses) across seven participating models: AIM/CGE, GCAM, IMAGE, MESSAGES, POLES, REMIND, WITCH. Scenario design prescribes a harmonised, global carbon price in line with long-term carbon budget. Delay scenarios follow the same price trajectory, but 10 years later. Carbon dioxide removal requirements represent ex-post calculations that subtract gross fossil fuel emissions from the carbon budget associated with the respective long-term warming limit. We take the carbon budget for limiting warming to\"),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 373.0, 'num_tokens': 83.0, 'num_tokens_approx': 86.0, 'num_words': 65.0, 'page_number': 1000, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': '9.5.3.4 Low-carbon Materials', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '9.5 Non-technological and Behavioural Mitigation Options and Strategies', 'toc_level1': '9.5.3 Adoption of Climate Mitigation Solutions\\xa0– Reasons and Willingness', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.485635072, 'content': 'Studies on low-carbon materials tend to focus on wood-based building systems and prefabricated housing construction, mostly in high-income countries, as many sustainable managed forestries and factories for prefabricated housing concentrated in such regions (Mata et al. 2021a). This uneven promotion of wood can lead to its overconsumption (Pomponi et al. 2020).'}, page_content='Studies on low-carbon materials tend to focus on wood-based building systems and prefabricated housing construction, mostly in high-income countries, as many sustainable managed forestries and factories for prefabricated housing concentrated in such regions (Mata et al. 2021a). This uneven promotion of wood can lead to its overconsumption (Pomponi et al. 2020).'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 539.0, 'num_tokens': 209.0, 'num_tokens_approx': 218.0, 'num_words': 164.0, 'page_number': 218, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Introduction and Framing ', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': 'References', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.485268235, 'content': 'Africa. Sustainability, 10(3), 815, doi:10.3390/su10030815. Majone, G., 1975: On the notion of political feasibility. Eur. J. Polit. Res., 3(3), 259-274, doi:10.1111/j.1475-6765.1975.tb00780.x. Makomere, R. and K. Liti Mbeva, 2018: Squaring the Circle: Development Prospects Within the Paris Agreement. Carbon Clim. Law Rev., 12(1), 31-40, doi:10.21552/cclr/2018/1/7. Malik, A. and J. Lan, 2016: The role of outsourcing in driving global carbon emissions. Econ. Syst. Res., 28(2), 168-182, doi:10.1080/09535 314.2016.1172475.'}, page_content='Africa. Sustainability, 10(3), 815, doi:10.3390/su10030815. Majone, G., 1975: On the notion of political feasibility. Eur. J. Polit. Res., 3(3), 259-274, doi:10.1111/j.1475-6765.1975.tb00780.x. Makomere, R. and K. Liti Mbeva, 2018: Squaring the Circle: Development Prospects Within the Paris Agreement. Carbon Clim. Law Rev., 12(1), 31-40, doi:10.21552/cclr/2018/1/7. Malik, A. and J. Lan, 2016: The role of outsourcing in driving global carbon emissions. Econ. Syst. Res., 28(2), 168-182, doi:10.1080/09535 314.2016.1172475.'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document3', 'document_number': 3.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 112.0, 'name': 'Technical Summary. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 529.0, 'num_tokens': 172.0, 'num_tokens_approx': 168.0, 'num_words': 126.0, 'page_number': 10, 'release_date': 2021.0, 'report_type': 'TS', 'section_header': 'Selected Updates and/or New Results since AR5', 'short_name': 'IPCC AR6 WGI TS', 'source': 'IPCC', 'toc_level0': 'Introduction', 'toc_level1': 'Selected Updates and/or New Results Since AR5, SRCCL and SROCC', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf', 'similarity_score': 0.484463751, 'content': 'likely in the range of 0.8degC to 2.5degC per 1000 GtC (1 Gigatonne of carbon, GtC, = 1 Petagram of carbon, PgC, = 3.664 Gigatonnes of carbon dioxide, GtCO2), and this was also used in SR1.5. The assessment in AR6, based on multiple lines of evidence, leads to a narrower likely range of 1.0degC-2.3degC per 1000 GtC. This has been incorporated in updated estimates of remaining carbon budgets (see Section TS.3.3.1), together with methodological improvements and recent observations. (Sections TS.1.3 and TS.3.3)'}, page_content='likely in the range of 0.8degC to 2.5degC per 1000 GtC (1 Gigatonne of carbon, GtC, = 1 Petagram of carbon, PgC, = 3.664 Gigatonnes of carbon dioxide, GtCO2), and this was also used in SR1.5. The assessment in AR6, based on multiple lines of evidence, leads to a narrower likely range of 1.0degC-2.3degC per 1000 GtC. This has been incorporated in updated estimates of remaining carbon budgets (see Section TS.3.3.1), together with methodological improvements and recent observations. (Sections TS.1.3 and TS.3.3)'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document2', 'document_number': 2.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2409.0, 'name': 'Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 529.0, 'num_tokens': 172.0, 'num_tokens_approx': 168.0, 'num_words': 126.0, 'page_number': 59, 'release_date': 2021.0, 'report_type': 'Full Report', 'section_header': 'Selected Updates and/or New Results since AR5', 'short_name': 'IPCC AR6 WGI FR', 'source': 'IPCC', 'toc_level0': 'Technical Summary', 'toc_level1': 'Introduction', 'toc_level2': 'Selected Updates and/or New Results Since AR5, SRCCL and SROCC', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf', 'similarity_score': 0.484463751, 'content': 'likely in the range of 0.8degC to 2.5degC per 1000 GtC (1 Gigatonne of carbon, GtC, = 1 Petagram of carbon, PgC, = 3.664 Gigatonnes of carbon dioxide, GtCO2), and this was also used in SR1.5. The assessment in AR6, based on multiple lines of evidence, leads to a narrower likely range of 1.0degC-2.3degC per 1000 GtC. This has been incorporated in updated estimates of remaining carbon budgets (see Section TS.3.3.1), together with methodological improvements and recent observations. (Sections TS.1.3 and TS.3.3)'}, page_content='likely in the range of 0.8degC to 2.5degC per 1000 GtC (1 Gigatonne of carbon, GtC, = 1 Petagram of carbon, PgC, = 3.664 Gigatonnes of carbon dioxide, GtCO2), and this was also used in SR1.5. The assessment in AR6, based on multiple lines of evidence, leads to a narrower likely range of 1.0degC-2.3degC per 1000 GtC. This has been incorporated in updated estimates of remaining carbon budgets (see Section TS.3.3.1), together with methodological improvements and recent observations. (Sections TS.1.3 and TS.3.3)'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 623.0, 'num_tokens': 136.0, 'num_tokens_approx': 145.0, 'num_words': 109.0, 'page_number': 361, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Chapter 3Chapter 3\\n\\x0c', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '3.4 Integrating Sectoral Analysis Into\\xa0Systems Transformations', 'toc_level1': '3.4.7 Other Carbon Dioxide Removal Options', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.484352142, 'content': 'to lower calculated cumulative emissions until the time of net zero (Grassi et al. 2021) as compared to IAM pathways. The numerical differences are purely due to differences in the conventions applied for reporting the anthropogenic emissions and do not have any implications for the underlying land-use changes or mitigation measures in the pathways. Grassi et al. (Grassi et al. 2021) offer a methodology for adjusting to reconcile these differences and enable a more accurate assessment of the collective progress achieved under the Paris Agreement (Chapter 7 and Cross-Chapter Box 6 in Chapter 7).'}, page_content='to lower calculated cumulative emissions until the time of net zero (Grassi et al. 2021) as compared to IAM pathways. The numerical differences are purely due to differences in the conventions applied for reporting the anthropogenic emissions and do not have any implications for the underlying land-use changes or mitigation measures in the pathways. Grassi et al. (Grassi et al. 2021) offer a methodology for adjusting to reconcile these differences and enable a more accurate assessment of the collective progress achieved under the Paris Agreement (Chapter 7 and Cross-Chapter Box 6 in Chapter 7).'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document2', 'document_number': 2.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2409.0, 'name': 'Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 1116.0, 'num_tokens': 241.0, 'num_tokens_approx': 268.0, 'num_words': 201.0, 'page_number': 45, 'release_date': 2021.0, 'report_type': 'Full Report', 'section_header': 'Figure SPM.10 | Near-linear relationship between cumulative CO2 emissions and the increase in global surface temperature ', 'short_name': 'IPCC AR6 WGI FR', 'source': 'IPCC', 'toc_level0': 'Summary for Policymakers', 'toc_level1': 'D. Limiting Future Climate Change', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf', 'similarity_score': 0.484263152, 'content': \"41 In the literature, units of degC per 1000 PgC (petagrams of carbon) are used, and the AR6 reports the TCRE likely range as 1.0degC to 2.3degC per 1000 PgC in the underlying report, with a best estimate of 1.65degC. 42 The condition in which anthropogenic carbon dioxide (CO2) emissions are balanced by anthropogenic CO2 removals over a specified period (Glossary). 43 The term 'carbon budget' refers to the maximum amount of cumulative net global anthropogenic CO2 emissions that would result in limiting global warming to a given level with a given probability, taking into account the effect of other anthropogenic climate forcers. This is referred to as the total carbon budget when expressed starting from the pre-industrial period, and as the remaining carbon budget when expressed from a recent specified date (Glossary). Historical cumulative CO2 emissions determine to a large degree warming to date, while future emissions cause future additional warming. The remaining carbon budget indicates how much CO2 could still be emitted while keeping warming below a specific temperature level.\\n2828\"}, page_content=\"41 In the literature, units of degC per 1000 PgC (petagrams of carbon) are used, and the AR6 reports the TCRE likely range as 1.0degC to 2.3degC per 1000 PgC in the underlying report, with a best estimate of 1.65degC. 42 The condition in which anthropogenic carbon dioxide (CO2) emissions are balanced by anthropogenic CO2 removals over a specified period (Glossary). 43 The term 'carbon budget' refers to the maximum amount of cumulative net global anthropogenic CO2 emissions that would result in limiting global warming to a given level with a given probability, taking into account the effect of other anthropogenic climate forcers. This is referred to as the total carbon budget when expressed starting from the pre-industrial period, and as the remaining carbon budget when expressed from a recent specified date (Glossary). Historical cumulative CO2 emissions determine to a large degree warming to date, while future emissions cause future additional warming. The remaining carbon budget indicates how much CO2 could still be emitted while keeping warming below a specific temperature level.\\n2828\"),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document22', 'document_number': 22.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 28.0, 'name': 'Annex I: Glossary In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate', 'num_characters': 923.0, 'num_tokens': 206.0, 'num_tokens_approx': 226.0, 'num_words': 170.0, 'page_number': 24, 'release_date': 2019.0, 'report_type': 'Special Report', 'section_header': 'Southern Ocean ', 'short_name': 'IPCC SR OC A1 G', 'source': 'IPCC', 'toc_level0': 'N/A', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/10_SROCC_AnnexI-Glossary_FINAL.pdf', 'similarity_score': 0.48402071, 'content': 'Stabilisation (of GHG or CO2-equivalent concentration) A state in which the atmospheric concentration of one greenhouse gas (GHG) (e.g., carbon dioxide, CO2) or of a CO2-equivalent basket of GHGs (or a combination of GHGs and aerosols) remains constant over time. See also Atmosphere.\\nTeleconnection \\nA statistical association between climate variables at widely separated, geographically-fixed spatial locations. Teleconnections are caused by large spatial structures such as basin-wide coupled modes of ocean-atmosphere variability, Rossby wave-trains, mid-latitude jets, and storm tracks.\\n Teleconnection \\n\\nStratification \\nProcess of forming of layers of (ocean) water with different prop\\x02erties such as salinity, density and temperature that act as barrier \\n Stratification \\n\\nSustainable development pathways (SDPs) See Pathways.'}, page_content='Stabilisation (of GHG or CO2-equivalent concentration) A state in which the atmospheric concentration of one greenhouse gas (GHG) (e.g., carbon dioxide, CO2) or of a CO2-equivalent basket of GHGs (or a combination of GHGs and aerosols) remains constant over time. See also Atmosphere.\\nTeleconnection \\nA statistical association between climate variables at widely separated, geographically-fixed spatial locations. Teleconnections are caused by large spatial structures such as basin-wide coupled modes of ocean-atmosphere variability, Rossby wave-trains, mid-latitude jets, and storm tracks.\\n Teleconnection \\n\\nStratification \\nProcess of forming of layers of (ocean) water with different prop\\x02erties such as salinity, density and temperature that act as barrier \\n Stratification \\n\\nSustainable development pathways (SDPs) See Pathways.'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document2', 'document_number': 2.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2409.0, 'name': 'Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 503.0, 'num_tokens': 148.0, 'num_tokens_approx': 140.0, 'num_words': 105.0, 'page_number': 252, 'release_date': 2021.0, 'report_type': 'Full Report', 'section_header': 'Table 1.4 | Overview of different RCP and SSP acronyms as used in this report.', 'short_name': 'IPCC AR6 WGI FR', 'source': 'IPCC', 'toc_level0': '1: Framing, Context, and Methods', 'toc_level1': '1.6 Dimensions of Integration: Scenarios, Global Warming Levels and Cumulative Carbon Emissions', 'toc_level2': 'Cross-Chapter Box\\xa01.4 |\\xa0The SSP Scenarios as Used in Working Group I\\xa0(WGI)', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf', 'similarity_score': 0.483880401, 'content': 's-Chapter Box 1.4, Figure 2 | Comparison between the Shared Socio-economic Pathways (SSP) scenarios and the Representative centration Pathway (RCP) scenarios in terms of their CO2, CH4 and N2O atmospheric concentrations (a-c), and their global emissions of CO2 N2O, black carbon (BC), organic carbon (OC), sulphur dioxide (SO2), ammonia (NH3), nitrogen oxides (NOx), volatile organic compounds C), sulphur hexafluoride (SF6), perfluorocarbons (PFCs), and hydrofluorocarbons (HFCs) (d-o). \\n235235'}, page_content='s-Chapter Box 1.4, Figure 2 | Comparison between the Shared Socio-economic Pathways (SSP) scenarios and the Representative centration Pathway (RCP) scenarios in terms of their CO2, CH4 and N2O atmospheric concentrations (a-c), and their global emissions of CO2 N2O, black carbon (BC), organic carbon (OC), sulphur dioxide (SO2), ammonia (NH3), nitrogen oxides (NOx), volatile organic compounds C), sulphur hexafluoride (SF6), perfluorocarbons (PFCs), and hydrofluorocarbons (HFCs) (d-o). \\n235235'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 846.0, 'num_tokens': 234.0, 'num_tokens_approx': 242.0, 'num_words': 182.0, 'page_number': 242, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Emissions of greenhouse gases have continued to increase since 1990, at varying rates', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '2.2 Past and Present Trends of Territorial GHG Emissions', 'toc_level1': '2.2.2 Trends in the Global GHG Emissions Trajectories and Short-lived Climate Forcers', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.483780235, 'content': \"Figure 2.5 | Total anthropogenic GHG emissions (GtCO2-eq yr -1) 1990-2019. CO2 from fossil fuel combustion and industrial processes (FFI); net CO2 from land use, land use change and forestry (LULUCF); methane (CH4); nitrous oxide (N2O); fluorinated gases (F-gases: HFCs, PFCs, SF6, NF3). Panel (a): Aggregate GHG emissions trends by groups of gases reported in GtCO2-eq converted based on global warming potentials with a 100-year time horizon (GWP100) from the IPCC Sixth Assessment Report. Panel (b): Waterfall diagrams juxtaposes GHG emissions for the most recent year (2019) in CO2 equivalent units using GWP100 values from the IPCC's Second, Fifth, and Sixth Assessment Reports, respectively. Error bars show the associated uncertainties at a 90% confidence interval. Panel (c): individual trends in CO2-FFI, CO2-LULUCF, CH4, N2O and\"}, page_content=\"Figure 2.5 | Total anthropogenic GHG emissions (GtCO2-eq yr -1) 1990-2019. CO2 from fossil fuel combustion and industrial processes (FFI); net CO2 from land use, land use change and forestry (LULUCF); methane (CH4); nitrous oxide (N2O); fluorinated gases (F-gases: HFCs, PFCs, SF6, NF3). Panel (a): Aggregate GHG emissions trends by groups of gases reported in GtCO2-eq converted based on global warming potentials with a 100-year time horizon (GWP100) from the IPCC Sixth Assessment Report. Panel (b): Waterfall diagrams juxtaposes GHG emissions for the most recent year (2019) in CO2 equivalent units using GWP100 values from the IPCC's Second, Fifth, and Sixth Assessment Reports, respectively. Error bars show the associated uncertainties at a 90% confidence interval. Panel (c): individual trends in CO2-FFI, CO2-LULUCF, CH4, N2O and\"),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 937.0, 'num_tokens': 224.0, 'num_tokens_approx': 222.0, 'num_words': 167.0, 'page_number': 1665, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': '16.2.2.3 General-purpose Technologies and Digitalisation', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '16.2 Elements, Drivers and Modelling of\\xa0Technology Innovation', 'toc_level1': 'Cross-Chapter Box\\xa011 |\\xa0Digitalisation: Efficiency Potentials and Governance Considerations', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.48349303, 'content': '16.2.2.3 General-purpose Technologies and Digitalisation\\nCross-Chapter Box 11 | Digitalisation: Efficiency Potentials and Governance Considerations\\nAuthors: Felix Creutzig (Germany), Elena Verdolini (Italy), Paolo Bertoldi (Italy), Luisa F. Cabeza (Spain), Maria Josefina Figueroa Meza (Venezuela/Denmark), Kirsten Halsnaes (Denmark), Joni Jupesta (Indonesia/Japan), Siir Kilkis (Turkey), Michael Konig (Germany), Eric Masanet (the United States of America), Nikola Milojevic-Dupont (France), Joyashree Roy (India/Thailand), Ayyoob Sharifi (Iran/Japan)\\nDigital technologies impact positively and negatively on GHG emissions through: their own carbon footprint; technology application for mitigation; and induced larger social change. Digital technologies also raise broader sustainability concerns due to their use of rare materials and associated waste, and their potential negative impact on inequalities and labour demand.'}, page_content='16.2.2.3 General-purpose Technologies and Digitalisation\\nCross-Chapter Box 11 | Digitalisation: Efficiency Potentials and Governance Considerations\\nAuthors: Felix Creutzig (Germany), Elena Verdolini (Italy), Paolo Bertoldi (Italy), Luisa F. Cabeza (Spain), Maria Josefina Figueroa Meza (Venezuela/Denmark), Kirsten Halsnaes (Denmark), Joni Jupesta (Indonesia/Japan), Siir Kilkis (Turkey), Michael Konig (Germany), Eric Masanet (the United States of America), Nikola Milojevic-Dupont (France), Joyashree Roy (India/Thailand), Ayyoob Sharifi (Iran/Japan)\\nDigital technologies impact positively and negatively on GHG emissions through: their own carbon footprint; technology application for mitigation; and induced larger social change. Digital technologies also raise broader sustainability concerns due to their use of rare materials and associated waste, and their potential negative impact on inequalities and labour demand.'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 229.0, 'num_tokens': 89.0, 'num_tokens_approx': 97.0, 'num_words': 73.0, 'page_number': 1649, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'pdf (Accessed November 1, 2021).', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': 'References', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.48348093, 'content': 'Helsinki, Finland, doi:10.35188/UNU-WIDER/2020/800-9.\\n Streck, C., 2016: Mobilizing Finance for redd+ After Paris. J. Eur. Environ. & Plan. Law, 13(2), 146-166, doi:10.1163/18760104-01302003. '}, page_content='Helsinki, Finland, doi:10.35188/UNU-WIDER/2020/800-9.\\n Streck, C., 2016: Mobilizing Finance for redd+ After Paris. J. Eur. Environ. & Plan. Law, 13(2), 146-166, doi:10.1163/18760104-01302003. '),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document2', 'document_number': 2.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2409.0, 'name': 'Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 294.0, 'num_tokens': 89.0, 'num_tokens_approx': 90.0, 'num_words': 68.0, 'page_number': 1195, 'release_date': 2021.0, 'report_type': 'Full Report', 'section_header': 'monsoon. Climate Dynamics, 56(5-6), 1643-1662, doi:10.1007/s00382-\\r\\n020-05551-5.', 'short_name': 'IPCC AR6 WGI FR', 'source': 'IPCC', 'toc_level0': '8: Water Cycle Changes', 'toc_level1': 'References', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf', 'similarity_score': 0.483309716, 'content': 'greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. [Masson-Delmotte, V., P. Zhai, H.-O. Portner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma\\x02'}, page_content='greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. [Masson-Delmotte, V., P. Zhai, H.-O. Portner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma\\x02'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document8', 'document_number': 8.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 102.0, 'name': 'Technical Summary. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 958.0, 'num_tokens': 210.0, 'num_tokens_approx': 229.0, 'num_words': 172.0, 'page_number': 23, 'release_date': 2022.0, 'report_type': 'TS', 'section_header': 'Technical Summary\\r\\ne fallen, ', 'short_name': 'IPCC AR6 WGIII TS', 'source': 'IPCC', 'toc_level0': 'N/A', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_TechnicalSummary.pdf', 'similarity_score': 0.483291417, 'content': 'Figure TS.9 | Aggregate greenhouse gas (GHG) emissions of global mitigation pathways (coloured funnels and bars) and projected emission outcomes from current policies and emissions implied by unconditional and conditional elements of NDCs, based on updates available by 11 October 2021 (grey bars). Shaded areas show GHG emission medians and 25-75th percentiles over 2020-2050 for four types of pathways in the AR6 scenario database: (i) pathways with near-term emissions developments in line with current policies and extended with comparable ambition levels beyond 2030; (ii) pathways likely to limit warming to 2degC with near-term emissions developments reflecting 2030 emissions implied by current NDCs followed by accelerated emissions reductions; (iii) pathways likely to limit warming to 2degC based on immediate actions from 2020 onwards; (iv) pathways that limit warming to 1.5degC with no or limited overshoot. Right-hand panels show two'}, page_content='Figure TS.9 | Aggregate greenhouse gas (GHG) emissions of global mitigation pathways (coloured funnels and bars) and projected emission outcomes from current policies and emissions implied by unconditional and conditional elements of NDCs, based on updates available by 11 October 2021 (grey bars). Shaded areas show GHG emission medians and 25-75th percentiles over 2020-2050 for four types of pathways in the AR6 scenario database: (i) pathways with near-term emissions developments in line with current policies and extended with comparable ambition levels beyond 2030; (ii) pathways likely to limit warming to 2degC with near-term emissions developments reflecting 2030 emissions implied by current NDCs followed by accelerated emissions reductions; (iii) pathways likely to limit warming to 2degC based on immediate actions from 2020 onwards; (iv) pathways that limit warming to 1.5degC with no or limited overshoot. Right-hand panels show two'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 958.0, 'num_tokens': 210.0, 'num_tokens_approx': 229.0, 'num_words': 172.0, 'page_number': 82, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Technical Summary\\r\\ne fallen, ', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': 'TS.4 Mitigation and Development Pathways', 'toc_level1': 'TS.4.1 Mitigation and Development Pathways in\\xa0the\\xa0Near- to Mid-term', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.483291417, 'content': 'Figure TS.9 | Aggregate greenhouse gas (GHG) emissions of global mitigation pathways (coloured funnels and bars) and projected emission outcomes from current policies and emissions implied by unconditional and conditional elements of NDCs, based on updates available by 11 October 2021 (grey bars). Shaded areas show GHG emission medians and 25-75th percentiles over 2020-2050 for four types of pathways in the AR6 scenario database: (i) pathways with near-term emissions developments in line with current policies and extended with comparable ambition levels beyond 2030; (ii) pathways likely to limit warming to 2degC with near-term emissions developments reflecting 2030 emissions implied by current NDCs followed by accelerated emissions reductions; (iii) pathways likely to limit warming to 2degC based on immediate actions from 2020 onwards; (iv) pathways that limit warming to 1.5degC with no or limited overshoot. Right-hand panels show two'}, page_content='Figure TS.9 | Aggregate greenhouse gas (GHG) emissions of global mitigation pathways (coloured funnels and bars) and projected emission outcomes from current policies and emissions implied by unconditional and conditional elements of NDCs, based on updates available by 11 October 2021 (grey bars). Shaded areas show GHG emission medians and 25-75th percentiles over 2020-2050 for four types of pathways in the AR6 scenario database: (i) pathways with near-term emissions developments in line with current policies and extended with comparable ambition levels beyond 2030; (ii) pathways likely to limit warming to 2degC with near-term emissions developments reflecting 2030 emissions implied by current NDCs followed by accelerated emissions reductions; (iii) pathways likely to limit warming to 2degC based on immediate actions from 2020 onwards; (iv) pathways that limit warming to 1.5degC with no or limited overshoot. Right-hand panels show two'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 413.0, 'num_tokens': 140.0, 'num_tokens_approx': 146.0, 'num_words': 110.0, 'page_number': 420, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Mitigation Pathways Compatible with Long-term Goals ', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': 'References', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.483218, 'content': 'Wachsmuth, J. and V. Duscha, 2019: Achievability of the Paris targets in the EU - the role of demand-side-driven mitigation in different types of scenarios. Energy Effic., 12(2), 403-421, doi:10.1007/s12053-018-9670-4. Waisman, H. et al., 2019: A pathway design framework for national low greenhouse gas emission development strategies. Nat. Clim. Change, 9(4), 261-268, doi:10.1038/s41558-019-0442-8.'}, page_content='Wachsmuth, J. and V. Duscha, 2019: Achievability of the Paris targets in the EU - the role of demand-side-driven mitigation in different types of scenarios. Energy Effic., 12(2), 403-421, doi:10.1007/s12053-018-9670-4. Waisman, H. et al., 2019: A pathway design framework for national low greenhouse gas emission development strategies. Nat. Clim. Change, 9(4), 261-268, doi:10.1038/s41558-019-0442-8.'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 1032.0, 'num_tokens': 226.0, 'num_tokens_approx': 272.0, 'num_words': 204.0, 'page_number': 1109, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': '10.6.4 Mitigation Potential of Fuels, Operations \\r\\nand Energy Efficiency', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '10.6 Decarbonisation of Shipping', 'toc_level1': '10.6.4 Mitigation Potential of Fuels, Operations and\\xa0Energy Efficiency', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.482932836, 'content': \"Figure 10.15 | Emissions reductions potential of alternative fuels compared to conventional fuels in the shipping sector. The x-axis is reported in %. Each individual marker represents a data point from the literature, where the brown square indicates a full LCA CO2-eq value; light blue triangles tank-to-wake CO2-eq; red triangles well-to-wake CO2-eq; yellow triangles well-to-wake CO2; and dark blue circles tank-to-wake CO2 emissions reduction potentials. The values in the Figure rely on the 100-year GWP value embedded in the source data, which may differ slightly with the updated 100-year GWP values from WGI. 'n' indicates the number of data points per sub-panel. Grey shaded boxes represent data where the energy comes from fossil resources, and blue from low-carbon renewable energy sources. 'Advanced biofuels EMF33' refers to emissions factors derived from simulation results from the integrated assessment models EMF33 scenarios (darkest coloured box in top left panel). Biofuels partial models CLC refers to\"}, page_content=\"Figure 10.15 | Emissions reductions potential of alternative fuels compared to conventional fuels in the shipping sector. The x-axis is reported in %. Each individual marker represents a data point from the literature, where the brown square indicates a full LCA CO2-eq value; light blue triangles tank-to-wake CO2-eq; red triangles well-to-wake CO2-eq; yellow triangles well-to-wake CO2; and dark blue circles tank-to-wake CO2 emissions reduction potentials. The values in the Figure rely on the 100-year GWP value embedded in the source data, which may differ slightly with the updated 100-year GWP values from WGI. 'n' indicates the number of data points per sub-panel. Grey shaded boxes represent data where the energy comes from fossil resources, and blue from low-carbon renewable energy sources. 'Advanced biofuels EMF33' refers to emissions factors derived from simulation results from the integrated assessment models EMF33 scenarios (darkest coloured box in top left panel). Biofuels partial models CLC refers to\"),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document9', 'document_number': 9.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2258.0, 'name': 'Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC', 'num_characters': 802.0, 'num_tokens': 146.0, 'num_tokens_approx': 168.0, 'num_words': 126.0, 'page_number': 903, 'release_date': 2022.0, 'report_type': 'Full Report', 'section_header': 'Urban Systems and Other Settlements', 'short_name': 'IPCC AR6 WGIII FR', 'source': 'IPCC', 'toc_level0': '8.3 Urban Systems and Greenhouse Gas Emissions', 'toc_level1': 'Box\\xa08.1 |\\xa0Does Urbanisation Drive Emissions?', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf', 'similarity_score': 0.482897669, 'content': 'Figure 8.11: Reference scenario and mitigation potential for global urban areas in the residential and commercial building, transport, waste, and material production sectors. The top red line indicates the reference scenario where no further emissions reduction efforts are taken, while the bottom dark line indicates the combined potential of reducing emissions across the sectors displayed. Wedges are provided for potential emissions savings associated with decarbonising residential buildings, commercial buildings, transport, waste, and materials as indicated in the legend. The shaded areas that take place among the wedges with lines indicate contributions from decarbonisation of electricity supply. Source: Re-used with permission from Coalition for Urban Transitions (2019).'}, page_content='Figure 8.11: Reference scenario and mitigation potential for global urban areas in the residential and commercial building, transport, waste, and material production sectors. The top red line indicates the reference scenario where no further emissions reduction efforts are taken, while the bottom dark line indicates the combined potential of reducing emissions across the sectors displayed. Wedges are provided for potential emissions savings associated with decarbonising residential buildings, commercial buildings, transport, waste, and materials as indicated in the legend. The shaded areas that take place among the wedges with lines indicate contributions from decarbonisation of electricity supply. Source: Re-used with permission from Coalition for Urban Transitions (2019).'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document17', 'document_number': 17.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 118.0, 'name': 'Chapter 3 - Polar Regions. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate', 'num_characters': 618.0, 'num_tokens': 230.0, 'num_tokens_approx': 222.0, 'num_words': 167.0, 'page_number': 50, 'release_date': 2019.0, 'report_type': 'Special Report', 'section_header': '3.4.3.1.1 Carbon cycle', 'short_name': 'IPCC SR OC C3', 'source': 'IPCC', 'toc_level0': 'N/A', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/05_SROCC_Ch03_FINAL.pdf', 'similarity_score': 0.482723325, 'content': '4 For context, total annual anthropogenic CO2 emissions were 10.8 +- 0.8 GtC yr-1 (39.6 +- 2.9 GtCO2 yr-1) on average over the period 2008-2017. Total annual anthropogenic methane emissions were 0.35 +- 0.01 GtCH4 yr-1, on average over the period 2003-2012 (Saunois et al., 2016; Le Quere et al., 2018).\\n4 For context, total annual anthropogenic CO2 emissions were 10.8 +- 0.8 GtC yr-1 (39.6 +- 2.9 GtCO2 yr-1) on average over the period 2008-2017. Total annual anthropogenic methane emissions were 0.35 +- 0.01 GtCH4 yr-1, on average over the period 2003-2012 (Saunois et al., 2016; Le Quere et al., 2018).\\n252252'}, page_content='4 For context, total annual anthropogenic CO2 emissions were 10.8 +- 0.8 GtC yr-1 (39.6 +- 2.9 GtCO2 yr-1) on average over the period 2008-2017. Total annual anthropogenic methane emissions were 0.35 +- 0.01 GtCH4 yr-1, on average over the period 2003-2012 (Saunois et al., 2016; Le Quere et al., 2018).\\n4 For context, total annual anthropogenic CO2 emissions were 10.8 +- 0.8 GtC yr-1 (39.6 +- 2.9 GtCO2 yr-1) on average over the period 2008-2017. Total annual anthropogenic methane emissions were 0.35 +- 0.01 GtCH4 yr-1, on average over the period 2003-2012 (Saunois et al., 2016; Le Quere et al., 2018).\\n252252'),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document2', 'document_number': 2.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2409.0, 'name': 'Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 836.0, 'num_tokens': 254.0, 'num_tokens_approx': 288.0, 'num_words': 216.0, 'page_number': 30, 'release_date': 2021.0, 'report_type': 'Full Report', 'section_header': 'Future emissions cause future additional warming, with total warming \\r\\ndominated by past and future CO2 emissions', 'short_name': 'IPCC AR6 WGI FR', 'source': 'IPCC', 'toc_level0': 'Summary for Policymakers', 'toc_level1': 'B. Possible Climate Futures', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf', 'similarity_score': 0.482723087, 'content': 'Figure SPM.4 | Future anthropogenic emissions of key drivers of climate change and warming contributions by groups of drivers for the five illustrative scenarios used in this report\\nThe five scenarios are SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5.\\nPanel (a) Annual anthropogenic (human-caused) emissions over the 2015-2100 period. Shown are emissions trajectories for carbon dioxide (CO2) from all sectors (GtCO2/yr) (left graph) and for a subset of three key non-CO2 drivers considered in the scenarios: methane (CH4, MtCH4/yr, top-right graph); nitrous oxide (N2O, MtN2O/yr, middle-right graph); and sulphur dioxide (SO2, MtSO2/yr, bottom-right graph, contributing to anthropogenic aerosols in panel (b).\\n The five scenarios are SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. '}, page_content='Figure SPM.4 | Future anthropogenic emissions of key drivers of climate change and warming contributions by groups of drivers for the five illustrative scenarios used in this report\\nThe five scenarios are SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5.\\nPanel (a) Annual anthropogenic (human-caused) emissions over the 2015-2100 period. Shown are emissions trajectories for carbon dioxide (CO2) from all sectors (GtCO2/yr) (left graph) and for a subset of three key non-CO2 drivers considered in the scenarios: methane (CH4, MtCH4/yr, top-right graph); nitrous oxide (N2O, MtN2O/yr, middle-right graph); and sulphur dioxide (SO2, MtSO2/yr, bottom-right graph, contributing to anthropogenic aerosols in panel (b).\\n The five scenarios are SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. '),\n",
+ " Document(metadata={'chunk_type': 'text', 'document_id': 'document2', 'document_number': 2.0, 'element_id': 'N/A', 'figure_code': 'N/A', 'file_size': 'N/A', 'image_path': 'N/A', 'n_pages': 2409.0, 'name': 'Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 1027.0, 'num_tokens': 235.0, 'num_tokens_approx': 261.0, 'num_words': 196.0, 'page_number': 206, 'release_date': 2021.0, 'report_type': 'Full Report', 'section_header': 'Projections of climate change', 'short_name': 'IPCC AR6 WGI FR', 'source': 'IPCC', 'toc_level0': '1: Framing, Context, and Methods', 'toc_level1': '1.4 AR6 Foundations and Concepts', 'toc_level2': '1.4.1 Baselines, Reference Periods and Anomalies', 'toc_level3': 'N/A', 'url': 'https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf', 'similarity_score': 0.482668132, 'content': 'Box 1.2 (continued)\\nto weaken during the 21st century (very likely), but a collapse is deemed very unlikely (albeit with medium confidence due to known biases in the climate models used for the assessment).\\nEmissions pathways to limit global warming\\nEmissions pathways to limit global warming The SR1.5 focused on emissions pathways and system transitions consistent with 1.5degC global warming over the 21st century. Building upon the understanding from AR5 WGI of the quasi-linear relationship between cumulative net anthropogenic CO2 emissions since 1850-1900 and maximum global mean temperature, the Report assessed the remaining carbon budgets compatible with the 1.5degC or 2degC warming goals of the Paris Agreement. Starting from year 2018, the remaining carbon budget for a one-in-two (50%) chance of limiting global warming to 1.5degC is about 580 GtCO2, and about 420 GtCO2 for a two-in-three (66%) chance (medium confidence).\\n Emissions pathways to limit global warming '}, page_content='Box 1.2 (continued)\\nto weaken during the 21st century (very likely), but a collapse is deemed very unlikely (albeit with medium confidence due to known biases in the climate models used for the assessment).\\nEmissions pathways to limit global warming\\nEmissions pathways to limit global warming The SR1.5 focused on emissions pathways and system transitions consistent with 1.5degC global warming over the 21st century. Building upon the understanding from AR5 WGI of the quasi-linear relationship between cumulative net anthropogenic CO2 emissions since 1850-1900 and maximum global mean temperature, the Report assessed the remaining carbon budgets compatible with the 1.5degC or 2degC warming goals of the Paris Agreement. Starting from year 2018, the remaining carbon budget for a one-in-two (50%) chance of limiting global warming to 1.5degC is about 580 GtCO2, and about 420 GtCO2 for a two-in-three (66%) chance (medium confidence).\\n Emissions pathways to limit global warming ')]"
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "retriever = ClimateQARetriever(\n",
+ " vectorstore=vectorstore,\n",
+ " sources = [\"IPCC\"],\n",
+ " min_size = 200,\n",
+ " k_summary = 5,\n",
+ " k_total = 100,\n",
+ " threshold = 0.5,\n",
+ " )\n",
+ "sources = retriever.invoke(\"graphique\")\n",
+ "# sources = retriever.invoke('What is the definition of the greenhouse effect?')\n",
+ "sources"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "8f09b312",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Document(metadata={'chunk_type': 'image', 'document_id': 'document1', 'document_number': 1.0, 'element_id': 'Picture_0_6', 'figure_code': 'Figure SPM.2', 'file_size': 141.70703125, 'image_path': '/dbfs/mnt/ai4sclqa/raw/climateqa/documents/document1/images/Picture_0_6.png', 'n_pages': 32.0, 'name': 'Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC', 'num_characters': 'N/A', 'num_tokens': 'N/A', 'num_tokens_approx': 'N/A', 'num_words': 'N/A', 'page_number': 7, 'release_date': 2021.0, 'report_type': 'SPM', 'section_header': 'N/A', 'short_name': 'IPCC AR6 WGI SPM', 'source': 'IPCC', 'toc_level0': 'A. The Current State of the Climate', 'toc_level1': 'N/A', 'toc_level2': 'N/A', 'toc_level3': 'N/A', 'url': 'https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf', 'similarity_score': 0.613080263, 'content': \"This image is a graphical representation of the contributing factors to observed global warming from 2010-2019 compared to the pre-industrial baseline of 1850-1900. It includes three bar graphs: (a) shows the total observed warming, (b) breaks down the aggregated contributions to warming, with human influence being a significant factor, and (c) details individual contributions by various greenhouse gases, aerosols, and other factors based on radiative forcing studies. The graphs illustrate that while greenhouse gases have led to warming, aerosol cooling has partly offset this effect. The collective scientific data provides evidence of human activities' impact on climate change, offering critical insights for policymakers and stakeholders in addressing the warming climate.\"}, page_content=\"This image is a graphical representation of the contributing factors to observed global warming from 2010-2019 compared to the pre-industrial baseline of 1850-1900. It includes three bar graphs: (a) shows the total observed warming, (b) breaks down the aggregated contributions to warming, with human influence being a significant factor, and (c) details individual contributions by various greenhouse gases, aerosols, and other factors based on radiative forcing studies. The graphs illustrate that while greenhouse gases have led to warming, aerosol cooling has partly offset this effect. The collective scientific data provides evidence of human activities' impact on climate change, offering critical insights for policymakers and stakeholders in addressing the warming climate.\")"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "sources[2]"
+ ]
+ },
{
"cell_type": "code",
"execution_count": 5,
@@ -1365,57 +1523,6 @@
" print(event)"
]
},
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "e54af13e",
- "metadata": {},
- "outputs": [
- {
- "ename": "NameError",
- "evalue": "name 'Document' is not defined",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
- "Cell \u001b[0;32mIn[3], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m x \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mevent\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mon_chain_end\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mretrieve_documents\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrun_id\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m60525384-8138-4522-99c1-a1eb59defbd4\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtags\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mgraph:step:4\u001b[39m\u001b[38;5;124m'\u001b[39m], \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmetadata\u001b[39m\u001b[38;5;124m'\u001b[39m: {\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlanggraph_step\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m4\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlanggraph_node\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mretrieve_documents\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlanggraph_triggers\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtransform_query\u001b[39m\u001b[38;5;124m'\u001b[39m], \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlanggraph_path\u001b[39m\u001b[38;5;124m'\u001b[39m: (\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m__pregel_pull\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mretrieve_documents\u001b[39m\u001b[38;5;124m'\u001b[39m), \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlanggraph_checkpoint_ns\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mretrieve_documents:29351557-d5e9-6fb7-9c8f-fc1101da92e8\u001b[39m\u001b[38;5;124m'\u001b[39m}, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdata\u001b[39m\u001b[38;5;124m'\u001b[39m: {\u001b[38;5;124m'\u001b[39m\u001b[38;5;124minput\u001b[39m\u001b[38;5;124m'\u001b[39m: {\u001b[38;5;124m'\u001b[39m\u001b[38;5;124muser_input\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mI am not really sure what you mean. What role do cloud formations play in modulating the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms radiative balance, and how are they represented in current climate models?\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlanguage\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mEnglish\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mintent\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msearch\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquery\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mI am not really sure what you mean. What role do cloud formations play in modulating the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms radiative balance, and how are they represented in current climate models?\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mremaining_questions\u001b[39m\u001b[38;5;124m'\u001b[39m: [{\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquestion\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWhat role do cloud formations play in modulating the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms radiative balance?\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msources\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPOS\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPBES\u001b[39m\u001b[38;5;124m'\u001b[39m], \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mindex\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mVector\u001b[39m\u001b[38;5;124m'\u001b[39m}, {\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquestion\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mHow are cloud formations represented in current climate models?\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msources\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPOS\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPBES\u001b[39m\u001b[38;5;124m'\u001b[39m], \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mindex\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mVector\u001b[39m\u001b[38;5;124m'\u001b[39m}], \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mn_questions\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m2\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124maudience\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mexpert\u001b[39m\u001b[38;5;124m'\u001b[39m}, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124moutput\u001b[39m\u001b[38;5;124m'\u001b[39m: {\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocuments\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[43mDocument\u001b[49m(metadata\u001b[38;5;241m=\u001b[39m{\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mchunk_type\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtext\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument_id\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument1\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument_number\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m1.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124melement_id\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfigure_code\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfile_size\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mimage_path\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mn_pages\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m32.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSummary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_characters\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m1056.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_tokens\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m219.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_tokens_approx\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m266.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_words\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m200.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpage_number\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m7\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrelease_date\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m2021.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mreport_type\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSPM\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msection_header\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFigure SPM.2 | Assessed contributions to observed warming in 2010-2019 relative to 1850-1900\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mshort_name\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC AR6 WGI SPM\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msource\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level0\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mA. The Current State of the Climate\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level1\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level2\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level3\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124murl\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mhttps://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msimilarity_score\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m0.595214307\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcontent\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPanel (b) Evidence from attribution studies, which synthesize information from climate models and observations. The panel shows temperature change attributed to: total human influence; changes in well-mixed greenhouse gas concentrations; other human drivers due to aerosols, ozone and land-use change (land-use reflectance); solar and volcanic drivers; and internal climate variability. Whiskers show likely ranges.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mPanel (c) Evidence from the assessment of radiative forcing and climate sensitivity. The panel shows temperature changes from individual components of human influence: emissions of greenhouse gases, aerosols and their precursors; land-use changes (land-use reflectance and irrigation); and aviation contrails. Whiskers show very likely ranges. Estimates account for both direct emissions into the atmosphere and their effect, if any, on other climate drivers. For aerosols, both direct effects (through radiation) and indirect effects (through interactions with clouds) are considered. \u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124mCross-Chapter Box 2.3, 3.3.1, 6.4.2, 7.3}\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mreranking_score\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m0.9769342541694641\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquery_used_for_retrieval\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWhat role do cloud formations play in modulating the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms radiative balance?\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msources_used\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPOS\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPBES\u001b[39m\u001b[38;5;124m'\u001b[39m], \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquestion_used\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWhat role do cloud formations play in modulating the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms radiative balance?\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mindex_used\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mVector\u001b[39m\u001b[38;5;124m'\u001b[39m}, page_content\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPanel (b) Evidence from attribution studies, which synthesize information from climate models and observations. The panel shows temperature change attributed to: total human influence; changes in well-mixed greenhouse gas concentrations; other human drivers due to aerosols, ozone and land-use change (land-use reflectance); solar and volcanic drivers; and internal climate variability. Whiskers show likely ranges.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mPanel (c) Evidence from the assessment of radiative forcing and climate sensitivity. The panel shows temperature changes from individual components of human influence: emissions of greenhouse gases, aerosols and their precursors; land-use changes (land-use reflectance and irrigation); and aviation contrails. Whiskers show very likely ranges. Estimates account for both direct emissions into the atmosphere and their effect, if any, on other climate drivers. For aerosols, both direct effects (through radiation) and indirect effects (through interactions with clouds) are considered. \u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124mCross-Chapter Box 2.3, 3.3.1, 6.4.2, 7.3}\u001b[39m\u001b[38;5;124m'\u001b[39m), Document(metadata\u001b[38;5;241m=\u001b[39m{\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mchunk_type\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtext\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument_id\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument1\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument_number\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m1.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124melement_id\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfigure_code\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfile_size\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mimage_path\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mn_pages\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m32.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSummary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_characters\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m638.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_tokens\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m177.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_tokens_approx\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m200.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_words\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m150.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpage_number\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m11\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrelease_date\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m2021.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mreport_type\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSPM\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msection_header\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFigure SPM.3 | Synthesis of assessed observed and attributable regional changes \u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mshort_name\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC AR6 WGI SPM\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msource\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level0\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mA. The Current State of the Climate\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level1\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level2\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level3\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124murl\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mhttps://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msimilarity_score\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m0.592556596\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcontent\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mA.4.1 Human-caused radiative forcing of 2.72 [1.96 to 3.48] W m-2 in 2019 relative to 1750 has warmed the climate system. This warming is mainly due to increased GHG concentrations, partly reduced by cooling due to increased aerosol concentrations. The radiative forcing has increased by 0.43 W m-2 (19\u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124m) relative to AR5, of which 0.34 W m-2 is due to the increase in GHG concentrations since 2011. The remainder is due to improved scientific understanding and changes in the assessment of aerosol forcing, which include decreases in concentration and improvement in its calculation (high confidence). \u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124m2.2, 7.3, TS.2.2, TS.3.1}\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mreranking_score\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m0.907663881778717\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquery_used_for_retrieval\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWhat role do cloud formations play in modulating the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms radiative balance?\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msources_used\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPOS\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPBES\u001b[39m\u001b[38;5;124m'\u001b[39m], \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquestion_used\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWhat role do cloud formations play in modulating the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms radiative balance?\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mindex_used\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mVector\u001b[39m\u001b[38;5;124m'\u001b[39m}, page_content\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mA.4.1 Human-caused radiative forcing of 2.72 [1.96 to 3.48] W m-2 in 2019 relative to 1750 has warmed the climate system. This warming is mainly due to increased GHG concentrations, partly reduced by cooling due to increased aerosol concentrations. The radiative forcing has increased by 0.43 W m-2 (19\u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124m) relative to AR5, of which 0.34 W m-2 is due to the increase in GHG concentrations since 2011. The remainder is due to improved scientific understanding and changes in the assessment of aerosol forcing, which include decreases in concentration and improvement in its calculation (high confidence). \u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124m2.2, 7.3, TS.2.2, TS.3.1}\u001b[39m\u001b[38;5;124m'\u001b[39m), Document(metadata\u001b[38;5;241m=\u001b[39m{\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mchunk_type\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtext\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument_id\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument1\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument_number\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m1.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124melement_id\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfigure_code\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfile_size\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mimage_path\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mn_pages\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m32.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSummary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_characters\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m827.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_tokens\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m238.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_tokens_approx\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m278.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_words\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m209.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpage_number\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m19\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrelease_date\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m2021.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mreport_type\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSPM\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msection_header\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFigure SPM.6 | Projected changes in the intensity and frequency of hot temperature extremes over land, extreme precipitation over land, \u001b[39m\u001b[38;5;130;01m\\r\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mand agricultural and ecological droughts in drying regions\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mshort_name\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC AR6 WGI SPM\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msource\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level0\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mB. Possible Climate Futures\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level1\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level2\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level3\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124murl\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mhttps://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msimilarity_score\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m0.582914889\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcontent\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mB.3.4 A projected southward shift and intensification of Southern Hemisphere summer mid-latitude storm tracks and associated precipitation is likely in the long term under high GHG emissions scenarios (SSP3-7.0, SSP5-8.5), but in the near term the effect of stratospheric ozone recovery counteracts these changes (high confidence). There is medium confidence in a continued poleward shift of storms and their precipitation in the North Pacific, while there is low confidence in projected changes in the North Atlantic storm tracks. \u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124m4.4, 4.5, 8.4, TS.2.3, TS.4.2}\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124m4.4, 4.5, 8.4, TS.2.3, TS.4.2}\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mB.4 Under scenarios with increasing CO2 emissions, the ocean and land carbon sinks are projected to be less effective at slowing the accumulation of CO2 in the atmosphere. \u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124m4.3, 5.2, 5.4, 5.5, 5.6} (Figure SPM.7)\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m1919\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mreranking_score\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m0.8376452922821045\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquery_used_for_retrieval\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWhat role do cloud formations play in modulating the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms radiative balance?\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msources_used\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPOS\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPBES\u001b[39m\u001b[38;5;124m'\u001b[39m], \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquestion_used\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWhat role do cloud formations play in modulating the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms radiative balance?\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mindex_used\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mVector\u001b[39m\u001b[38;5;124m'\u001b[39m}, page_content\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mB.3.4 A projected southward shift and intensification of Southern Hemisphere summer mid-latitude storm tracks and associated precipitation is likely in the long term under high GHG emissions scenarios (SSP3-7.0, SSP5-8.5), but in the near term the effect of stratospheric ozone recovery counteracts these changes (high confidence). There is medium confidence in a continued poleward shift of storms and their precipitation in the North Pacific, while there is low confidence in projected changes in the North Atlantic storm tracks. \u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124m4.4, 4.5, 8.4, TS.2.3, TS.4.2}\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124m4.4, 4.5, 8.4, TS.2.3, TS.4.2}\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mB.4 Under scenarios with increasing CO2 emissions, the ocean and land carbon sinks are projected to be less effective at slowing the accumulation of CO2 in the atmosphere. \u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124m4.3, 5.2, 5.4, 5.5, 5.6} (Figure SPM.7)\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m1919\u001b[39m\u001b[38;5;124m'\u001b[39m), Document(metadata\u001b[38;5;241m=\u001b[39m{\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mchunk_type\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtext\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument_id\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument4\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument_number\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m4.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124melement_id\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfigure_code\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfile_size\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mimage_path\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mn_pages\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m34.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSummary for Policymakers. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of the WGII to the AR6 of the IPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_characters\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m806.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_tokens\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m147.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_tokens_approx\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m162.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_words\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m122.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpage_number\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m19\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrelease_date\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m2022.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mreport_type\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSPM\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msection_header\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mComplex, Compound and Cascading Risks\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mshort_name\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC AR6 WGII SPM\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msource\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level0\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mB: Observed and Projected Impacts and Risks\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level1\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mImpacts of Temporary Overshoot\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level2\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level3\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124murl\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mhttps://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msimilarity_score\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m0.581911206\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcontent\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mB.5.5 Solar radiation modification approaches, if they were to be implemented, introduce a widespread range of new risks to people and ecosystems, which are not well understood (high confidence). Solar radiation modification approaches have potential to offset warming and ameliorate some climate hazards, but substantial residual climate change or overcompensating change would occur at regional scales and seasonal timescales (high confidence). Large uncertainties and knowledge gaps are associated with the potential of solar radiation modification approaches to reduce climate change risks. Solar radiation modification would not stop atmospheric CO2 concentrations from increasing or reduce resulting ocean acidification under continued anthropogenic emissions (high confidence). \u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124mCWGB SRM}\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mreranking_score\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m0.7240780591964722\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquery_used_for_retrieval\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWhat role do cloud formations play in modulating the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms radiative balance?\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msources_used\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPOS\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPBES\u001b[39m\u001b[38;5;124m'\u001b[39m], \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquestion_used\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWhat role do cloud formations play in modulating the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms radiative balance?\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mindex_used\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mVector\u001b[39m\u001b[38;5;124m'\u001b[39m}, page_content\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mB.5.5 Solar radiation modification approaches, if they were to be implemented, introduce a widespread range of new risks to people and ecosystems, which are not well understood (high confidence). Solar radiation modification approaches have potential to offset warming and ameliorate some climate hazards, but substantial residual climate change or overcompensating change would occur at regional scales and seasonal timescales (high confidence). Large uncertainties and knowledge gaps are associated with the potential of solar radiation modification approaches to reduce climate change risks. Solar radiation modification would not stop atmospheric CO2 concentrations from increasing or reduce resulting ocean acidification under continued anthropogenic emissions (high confidence). \u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124mCWGB SRM}\u001b[39m\u001b[38;5;124m'\u001b[39m), Document(metadata\u001b[38;5;241m=\u001b[39m{\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mchunk_type\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtext\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument_id\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument10\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument_number\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m10.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124melement_id\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfigure_code\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfile_size\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mimage_path\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mn_pages\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m36.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSynthesis report of the IPCC Sixth Assesment Report AR6\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_characters\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m686.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_tokens\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m163.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_tokens_approx\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m182.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_words\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m137.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpage_number\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m19\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrelease_date\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m2023.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mreport_type\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSPM\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msection_header\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFuture Climate Change \u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mshort_name\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC AR6 SYR\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msource\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level0\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level1\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level2\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level3\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124murl\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mhttps://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msimilarity_score\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m0.581764042\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcontent\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPermafrost, seasonal snow cover, glaciers, the Greenland and Antarctic Ice Sheets, an\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124msonal snow cover, glaciers, the Greenland and Antarctic Ice Sheets, and Arctic se\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m35 Based on 2500-year reconstructions, eruptions with a radiative forcing more negative than -1 W m-2, related to the radiative effect of volcanic stratospheric aerosols in the literature assessed in this report, occur on average twice per century. \u001b[39m\u001b[38;5;132;01m{4.3}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m35 Based on 2500-year reconstructions, eruptions with a radiative forcing more negative than -1 W m-2, related to the radiative effect of volcanic stratospheric aerosols in the literature assessed in this report, occur on average twice per century. \u001b[39m\u001b[38;5;132;01m{4.3}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m1313\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mreranking_score\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m0.7240780591964722\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquery_used_for_retrieval\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWhat role do cloud formations play in modulating the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms radiative balance?\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msources_used\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPOS\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPBES\u001b[39m\u001b[38;5;124m'\u001b[39m], \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquestion_used\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWhat role do cloud formations play in modulating the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms radiative balance?\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mindex_used\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mVector\u001b[39m\u001b[38;5;124m'\u001b[39m}, page_content\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPermafrost, seasonal snow cover, glaciers, the Greenland and Antarctic Ice Sheets, an\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124msonal snow cover, glaciers, the Greenland and Antarctic Ice Sheets, and Arctic se\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m35 Based on 2500-year reconstructions, eruptions with a radiative forcing more negative than -1 W m-2, related to the radiative effect of volcanic stratospheric aerosols in the literature assessed in this report, occur on average twice per century. \u001b[39m\u001b[38;5;132;01m{4.3}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m35 Based on 2500-year reconstructions, eruptions with a radiative forcing more negative than -1 W m-2, related to the radiative effect of volcanic stratospheric aerosols in the literature assessed in this report, occur on average twice per century. \u001b[39m\u001b[38;5;132;01m{4.3}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m1313\u001b[39m\u001b[38;5;124m'\u001b[39m), Document(metadata\u001b[38;5;241m=\u001b[39m{\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mchunk_type\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtext\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument_id\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument2\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument_number\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m2.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124melement_id\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfigure_code\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfile_size\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mimage_path\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mn_pages\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m2409.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFull Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_characters\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m644.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_tokens\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m151.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_tokens_approx\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m165.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_words\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m124.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpage_number\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m950\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrelease_date\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m2021.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mreport_type\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFull Report\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msection_header\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m7.2.1 Present-day Energy Budget\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mshort_name\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC AR6 WGI FR\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msource\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level0\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m7: The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level1\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m7.2 Earth’s Energy Budget and its Changes\u001b[39m\u001b[38;5;130;01m\\xa0\u001b[39;00m\u001b[38;5;124mThrough Time\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level2\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m7.2.1 Present-day Energy Budget\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level3\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124murl\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mhttps://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msimilarity_score\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m0.741419494\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcontent\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFigure 7.2 (upper panel) shows a schematic representation of Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms energy budget for the early 21st century, including globally averaged estimates of the individual components (Wild et al., 2015). Clouds are important modulators of global energy fluxes. Thus, any perturbations in the cloud fields, such as forcing by aerosol-cloud interactions (Section 7.3) or through cloud feedbacks (Section 7.4) can have a strong influence on the energy distribution in the climate system. To illustrate the overall effects that clouds exert on energy fluxes, Figure 7.2 (lower panel) also shows the energy budget in the absence \u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m933933\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mreranking_score\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m0.7089773416519165\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquery_used_for_retrieval\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWhat role do cloud formations play in modulating the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms radiative balance?\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msources_used\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPOS\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPBES\u001b[39m\u001b[38;5;124m'\u001b[39m], \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquestion_used\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWhat role do cloud formations play in modulating the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms radiative balance?\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mindex_used\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mVector\u001b[39m\u001b[38;5;124m'\u001b[39m}, page_content\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFigure 7.2 (upper panel) shows a schematic representation of Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms energy budget for the early 21st century, including globally averaged estimates of the individual components (Wild et al., 2015). Clouds are important modulators of global energy fluxes. Thus, any perturbations in the cloud fields, such as forcing by aerosol-cloud interactions (Section 7.3) or through cloud feedbacks (Section 7.4) can have a strong influence on the energy distribution in the climate system. To illustrate the overall effects that clouds exert on energy fluxes, Figure 7.2 (lower panel) also shows the energy budget in the absence \u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m933933\u001b[39m\u001b[38;5;124m\"\u001b[39m), Document(metadata\u001b[38;5;241m=\u001b[39m{\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mchunk_type\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtext\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument_id\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument2\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdocument_number\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m2.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124melement_id\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfigure_code\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfile_size\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mimage_path\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mN/A\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mn_pages\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m2409.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFull Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_characters\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m1121.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_tokens\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m231.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_tokens_approx\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m288.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnum_words\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m216.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpage_number\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m1039\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrelease_date\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m2021.0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mreport_type\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFull Report\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msection_header\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFAQ 7.2 | What Is the Role of Clouds in a Warming Climate?\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mshort_name\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC AR6 WGI FR\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msource\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level0\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m7: The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level1\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m7.6 Metrics to Evaluate Emissions\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level2\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFrequently Asked Questions\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtoc_level3\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFAQ 7.1 | What Is the Earth’s Energy Budget, and What Does It Tell Us About Climate Change?\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124murl\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mhttps://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msimilarity_score\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m0.727996647\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcontent\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mClouds cover roughly two-thirds of the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms surface. They consist of small droplets and/or ice crystals, which form when water vapour condenses or deposits around tiny particles called aerosols (such as salt, dust, or smoke). Clouds play a critical role in the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms energy budget at the top of our atmosphere and therefore influence Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms surface temperature (see FAQ 7.1). The interactions between clouds and the climate are complex and varied. Clouds at low altitudes tend to reflect incoming solar energy back to space, creating a cooling effect by preventing this energy from reaching and warming the Earth. On the other hand, higher clouds tend to trap (i.e., absorb and then emit at a lower temperature) some of the energy leaving the Earth, leading to a warming effect. On average, clouds reflect back more incoming energy than the amount of outgoing energy they trap, resulting in an overall net cooling effect on the present climate. Human activities since the pre-industrial era have altered this climate effect of clouds in two different ways: by changing the abundance of the aerosol\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mreranking_score\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m0.47518521547317505\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquery_used_for_retrieval\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWhat role do cloud formations play in modulating the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms radiative balance?\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msources_used\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPOS\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPBES\u001b[39m\u001b[38;5;124m'\u001b[39m], \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquestion_used\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWhat role do cloud formations play in modulating the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms radiative balance?\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mindex_used\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mVector\u001b[39m\u001b[38;5;124m'\u001b[39m}, page_content\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mClouds cover roughly two-thirds of the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms surface. They consist of small droplets and/or ice crystals, which form when water vapour condenses or deposits around tiny particles called aerosols (such as salt, dust, or smoke). Clouds play a critical role in the Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms energy budget at the top of our atmosphere and therefore influence Earth\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms surface temperature (see FAQ 7.1). The interactions between clouds and the climate are complex and varied. Clouds at low altitudes tend to reflect incoming solar energy back to space, creating a cooling effect by preventing this energy from reaching and warming the Earth. On the other hand, higher clouds tend to trap (i.e., absorb and then emit at a lower temperature) some of the energy leaving the Earth, leading to a warming effect. On average, clouds reflect back more incoming energy than the amount of outgoing energy they trap, resulting in an overall net cooling effect on the present climate. Human activities since the pre-industrial era have altered this climate effect of clouds in two different ways: by changing the abundance of the aerosol\u001b[39m\u001b[38;5;124m\"\u001b[39m)], \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mremaining_questions\u001b[39m\u001b[38;5;124m'\u001b[39m: [{\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mquestion\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mHow are cloud formations represented in current climate models?\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msources\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPCC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPOS\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mIPBES\u001b[39m\u001b[38;5;124m'\u001b[39m], \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mindex\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mVector\u001b[39m\u001b[38;5;124m'\u001b[39m}]}}, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mparent_ids\u001b[39m\u001b[38;5;124m'\u001b[39m: []}\n",
- "\u001b[0;31mNameError\u001b[0m: name 'Document' is not defined"
- ]
- }
- ],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "98d3cafd",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'intent': 'search',\n",
- " 'language': 'English',\n",
- " 'query': \"I am not really sure what you mean. What role do cloud formations play in modulating the Earth's radiative balance, and how are they represented in current climate models?\"}"
- ]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "x[\"data\"][\"output\"]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "3aace6fc",
- "metadata": {},
- "outputs": [],
- "source": []
- },
{
"cell_type": "code",
"execution_count": 17,