Eladlev commited on
Commit
0ff4531
·
verified ·
1 Parent(s): 7fdfdec

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +141 -37
  2. requirements.txt +12 -1
  3. serp.py +238 -0
app.py CHANGED
@@ -1,53 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
  import gradio as gr
3
  import os
4
  from openai import OpenAI
5
 
6
-
7
  with gr.Blocks() as demo:
8
  with gr.Row():
9
  image = gr.Image(label="image", height=600)
10
  chatbot = gr.Chatbot()
11
 
12
- prompt = gr.Textbox(label="prompt")
13
- url = gr.Textbox(label="url")
 
14
  openai_key = gr.Textbox(label="OpenAI API key")
15
- gr.Examples(
16
- examples=[
17
- ["https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_sketch.png", "Describe what is in the image","https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_sketch.png"]
18
- ],
19
- inputs=[image, prompt,url],
20
- )
21
-
22
- def respond(message,openai_key, url ,chat_history):
23
- os.environ["OPENAI_API_KEY"] = openai_key
24
- client = OpenAI()
25
-
26
- response = client.chat.completions.create(
27
- model="gpt-4-vision-preview",
28
- messages=[
29
- {
30
- "role": "user",
31
- "content": [
32
- {"type": "text", "text": message},
33
- {
34
- "type": "image_url",
35
- "image_url":url,
36
- },
37
- ],
38
- },
39
- ],
40
- max_tokens=1000,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  )
42
 
43
- out = response.choices[0].message.content
44
 
45
- chat_history.append((message, out))
46
- return "", chat_history
47
 
48
- def update_image(url, image):
49
- return url
 
50
 
51
- prompt.submit(respond, [prompt,openai_key, url, chatbot], [prompt, chatbot])
52
- url.submit(update_image, [ url, image], [image])
53
- demo.queue().launch(share=True)
 
 
 
1
+ from langchain.agents import create_tool_calling_agent
2
+ from langchain.agents import AgentExecutor
3
+ import os
4
+ from langchain_openai import ChatOpenAI
5
+ from langchain.agents import Tool
6
+ from serp import GoogleSerperAPIWrapper, get_youtube_url
7
+ from langchain_core.prompts import ChatPromptTemplate
8
+ from langchain_core.messages import HumanMessage, AIMessage
9
+ import base64
10
+ from PIL import Image
11
+ import io
12
+
13
+ def encode_image(image_path):
14
+ with open(image_path, "rb") as image_file:
15
+ return base64.b64encode(image_file.read()).decode('utf-8')
16
+
17
+ os.environ["SERPER_API_KEY"] = '2a'
18
+ os.environ['OPENAI_API_KEY'] = "sk-"
19
+
20
+ llm = ChatOpenAI(temperature=0, model_name='gpt-4o', openai_api_key=os.environ['OPENAI_API_KEY'])
21
+ search_web = GoogleSerperAPIWrapper()
22
+ search_images = GoogleSerperAPIWrapper(type="images")
23
+ tools = [
24
+ Tool(
25
+ name="web_search",
26
+ func=search_web.run,
27
+ description="useful when you need to extract from the internet a list of websites snippet and a **valid URL**"
28
+ ),
29
+ Tool(
30
+ name="image_search",
31
+ func=search_images.run,
32
+ description="useful when you need to extract from the internet a list of images with the their titles and a **valid URL**"
33
+ ),
34
+ Tool(
35
+ name="video_search",
36
+ func=get_youtube_url,
37
+ description="useful when you need to extract from the internet a list of videos. The output is a list with a **valid URL**"
38
+ ),
39
+ ]
40
+
41
+ # prompt = ChatPromptTemplate.from_messages([
42
+ # self.system_prompt,
43
+ # self.source_prompt,
44
+ # self.generate_eval_message(url)])
45
+
46
+ agent_prompt = ChatPromptTemplate.from_messages(
47
+ [
48
+ (
49
+ "system",
50
+ "You are a helpful assistant that can provide informative urls from the web for any request.Review the attached image and collect from the internet resources which are related and helpful to continue writing the document. This includes website, images and videos Group the resources you collect by type and subject. You should collect at least 2 images and 2 websites and 1 video."
51
+ ),
52
+ ("human", "{input}"),
53
+ ("placeholder", "{agent_scratchpad}"),
54
+ ]
55
+ )
56
+
57
+ agent = create_tool_calling_agent(llm, tools, agent_prompt)
58
+
59
+ agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
60
 
61
  import gradio as gr
62
  import os
63
  from openai import OpenAI
64
 
 
65
  with gr.Blocks() as demo:
66
  with gr.Row():
67
  image = gr.Image(label="image", height=600)
68
  chatbot = gr.Chatbot()
69
 
70
+ #prompt = gr.Textbox(label="prompt")
71
+ button = gr.Button()
72
+ serper_api = gr.Textbox(label="Serper API key")
73
  openai_key = gr.Textbox(label="OpenAI API key")
74
+
75
+
76
+ def respond(chat_history, image):
77
+ out = agent_executor.invoke({'input': ''})
78
+
79
+ chat_history.append(('', out['output']))
80
+ return chat_history
81
+
82
+
83
+ def update_serper_api(serper_api):
84
+ print(os.environ['OPENAI_API_KEY'])
85
+ print(serper_api)
86
+ os.environ["SERPER_API_KEY"] = serper_api
87
+ search_web = GoogleSerperAPIWrapper()
88
+ search_images = GoogleSerperAPIWrapper(type="images")
89
+ global tools
90
+ tools = [
91
+ Tool(
92
+ name="web_search",
93
+ func=search_web.run,
94
+ description="useful when you need to extract from the internet a list of websites snippet and a **valid URL**"
95
+ ),
96
+ Tool(
97
+ name="image_search",
98
+ func=search_images.run,
99
+ description="useful when you need to extract from the internet a list of images with the their titles and a **valid URL**"
100
+ ),
101
+ Tool(
102
+ name="video_search",
103
+ func=get_youtube_url,
104
+ description="useful when you need to extract from the internet a list of videos. The output is a list with a **valid URL**"
105
+ ),
106
+ ]
107
+ agent = create_tool_calling_agent(llm, tools, agent_prompt)
108
+ global agent_executor
109
+ agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
110
+
111
+
112
+ def update_agent(openai_key):
113
+ os.environ['OPENAI_API_KEY'] = openai_key
114
+ print(os.environ['OPENAI_API_KEY'])
115
+ global llm
116
+ llm = ChatOpenAI(temperature=0, model_name='gpt-4o', openai_api_key=os.environ['OPENAI_API_KEY'])
117
+ agent = create_tool_calling_agent(llm, tools, agent_prompt)
118
+ global agent_executor
119
+ agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
120
+
121
+ def change_image(image):
122
+ image_pil = Image.fromarray(image)
123
+
124
+ # Save the image to a bytes buffer
125
+ buffer = io.BytesIO()
126
+ image_pil.save(buffer, format="PNG") # You can also use "JPEG" if needed
127
+
128
+ # Get the byte data from the buffer and encode it to base64
129
+ image_bytes = buffer.getvalue()
130
+ image_base64 = base64.b64encode(image_bytes).decode('utf-8')
131
+ message_content = [{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,"
132
+ f"{image_base64}"}}]
133
+ image_message = HumanMessage(content=message_content)
134
+ global agent_prompt
135
+ agent_prompt = ChatPromptTemplate.from_messages(
136
+ [
137
+ (
138
+ "system",
139
+ "You are a helpful assistant that can provide informative urls from the web for any request.Review the attached image and collect from the internet resources which are related and helpful to continue writing the document. This includes website, images Group the resources you collect by type and subject. You should collect at least 3 images and 3 websites."
140
+ ),
141
+ image_message,
142
+ ("human", "{input}"),
143
+ ("placeholder", "{agent_scratchpad}"),
144
+ ]
145
  )
146
 
 
147
 
 
 
148
 
149
+ agent = create_tool_calling_agent(llm, tools, agent_prompt)
150
+ global agent_executor
151
+ agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
152
 
153
+ button.click(respond, [chatbot, image], [chatbot])
154
+ openai_key.submit(update_agent, [openai_key], [])
155
+ serper_api.submit(update_serper_api, [serper_api], [])
156
+ image.change(change_image,[image],[])
157
+ demo.queue().launch(share=True)
requirements.txt CHANGED
@@ -1 +1,12 @@
1
- openai
 
 
 
 
 
 
 
 
 
 
 
 
1
+ tqdm==4.66.1
2
+ langchain==0.2.7
3
+ openai==1.35.10
4
+ tiktoken==0.7.0
5
+ easydict==1.11
6
+ sentence-transformers==2.2.2
7
+ langchain-google-genai==1.0.8
8
+ pillow==10.2.0
9
+ langchain_openai==0.1.20
10
+ langchain_community
11
+ gradio
12
+ youtube_search
serp.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Util that calls Google Search using the Serper.dev API."""
2
+
3
+ from typing import Any, Dict, List, Optional
4
+
5
+ import aiohttp
6
+ import requests
7
+ from langchain_core.pydantic_v1 import BaseModel, root_validator
8
+ from langchain_core.utils import get_from_dict_or_env
9
+ from typing_extensions import Literal
10
+
11
+ import requests
12
+ import json
13
+
14
+ def check_link_no_redirect(url):
15
+ try:
16
+ # Make a HEAD request without allowing redirects, with a 0.5-second timeout
17
+ response = requests.head(url, allow_redirects=False, timeout=0.3)
18
+
19
+ # Check for successful status code (200 OK) and no redirection (3xx codes)
20
+ if response.status_code == 200:
21
+ return True
22
+ elif 300 <= response.status_code < 400:
23
+ return False
24
+ else:
25
+ return False
26
+ except requests.exceptions.Timeout:
27
+ return False
28
+ except requests.exceptions.RequestException as e:
29
+ return False
30
+
31
+
32
+
33
+
34
+ class GoogleSerperAPIWrapper(BaseModel):
35
+ """Wrapper around the Serper.dev Google Search API.
36
+
37
+ You can create a free API key at https://serper.dev.
38
+
39
+ To use, you should have the environment variable ``SERPER_API_KEY``
40
+ set with your API key, or pass `serper_api_key` as a named parameter
41
+ to the constructor.
42
+
43
+ Example:
44
+ .. code-block:: python
45
+
46
+ from langchain_community.utilities import GoogleSerperAPIWrapper
47
+ google_serper = GoogleSerperAPIWrapper()
48
+ """
49
+
50
+ k: int = 10
51
+ gl: str = "us"
52
+ hl: str = "en"
53
+ # "places" and "images" is available from Serper but not implemented in the
54
+ # parser of run(). They can be used in results()
55
+ type: Literal["news", "search", "places", "images"] = "search"
56
+ result_key_for_type = {
57
+ "news": "news",
58
+ "places": "places",
59
+ "images": "images",
60
+ "search": "organic",
61
+ }
62
+
63
+ tbs: Optional[str] = None
64
+ serper_api_key: Optional[str] = None
65
+ aiosession: Optional[aiohttp.ClientSession] = None
66
+
67
+ class Config:
68
+ """Configuration for this pydantic object."""
69
+
70
+ arbitrary_types_allowed = True
71
+
72
+ @root_validator(pre=True)
73
+ def validate_environment(cls, values: Dict) -> Dict:
74
+ """Validate that api key exists in environment."""
75
+ serper_api_key = get_from_dict_or_env(
76
+ values, "serper_api_key", "SERPER_API_KEY"
77
+ )
78
+ values["serper_api_key"] = serper_api_key
79
+
80
+ return values
81
+
82
+ def results(self, query: str, **kwargs: Any) -> Dict:
83
+ """Run query through GoogleSearch."""
84
+ return self._google_serper_api_results(
85
+ query,
86
+ gl=self.gl,
87
+ hl=self.hl,
88
+ num=self.k,
89
+ tbs=self.tbs,
90
+ search_type=self.type,
91
+ **kwargs,
92
+ )
93
+
94
+ def run(self, query: str, **kwargs: Any) -> str:
95
+ """Run query through GoogleSearch and parse result."""
96
+ results = self._google_serper_api_results(
97
+ query,
98
+ gl=self.gl,
99
+ hl=self.hl,
100
+ num=self.k,
101
+ tbs=self.tbs,
102
+ search_type=self.type,
103
+ **kwargs,
104
+ )
105
+
106
+ return self._parse_results(results)
107
+
108
+ async def aresults(self, query: str, **kwargs: Any) -> Dict:
109
+ """Run query through GoogleSearch."""
110
+ results = await self._async_google_serper_search_results(
111
+ query,
112
+ gl=self.gl,
113
+ hl=self.hl,
114
+ num=self.k,
115
+ search_type=self.type,
116
+ tbs=self.tbs,
117
+ **kwargs,
118
+ )
119
+ return results
120
+
121
+ async def arun(self, query: str, **kwargs: Any) -> str:
122
+ """Run query through GoogleSearch and parse result async."""
123
+ results = await self._async_google_serper_search_results(
124
+ query,
125
+ gl=self.gl,
126
+ hl=self.hl,
127
+ num=self.k,
128
+ search_type=self.type,
129
+ tbs=self.tbs,
130
+ **kwargs,
131
+ )
132
+
133
+ return self._parse_results(results)
134
+
135
+ def _parse_snippets(self, results: dict) -> List[str]:
136
+ snippets = []
137
+
138
+ # if results.get("answerBox"):
139
+ # answer_box = results.get("answerBox", {})
140
+ # if answer_box.get("answer"):
141
+ # return [answer_box.get("answer")]
142
+ # elif answer_box.get("snippet"):
143
+ # return [answer_box.get("snippet").replace("\n", " ")]
144
+ # elif answer_box.get("snippetHighlighted"):
145
+ # return answer_box.get("snippetHighlighted")
146
+ #
147
+ # if results.get("knowledgeGraph"):
148
+ # kg = results.get("knowledgeGraph", {})
149
+ # title = kg.get("title")
150
+ # entity_type = kg.get("type")
151
+ # if entity_type:
152
+ # snippets.append(f"{title}: {entity_type}.")
153
+ # description = kg.get("description")
154
+ # if description:
155
+ # snippets.append(description)
156
+ # for attribute, value in kg.get("attributes", {}).items():
157
+ # snippets.append(f"{title} {attribute}: {value}.")
158
+
159
+ for result in results[self.result_key_for_type[self.type]][: self.k]:
160
+ if "snippet" in result:
161
+ if not check_link_no_redirect(result['link']):
162
+ continue
163
+ snippets.append('Snippet: {}\nUrl: {}'.format(result['snippet'],result['link']))
164
+
165
+ if len(snippets) == 0:
166
+ return ["No good Google Search Result was found"]
167
+ return snippets
168
+
169
+ def _parse_results(self, results: dict) -> str:
170
+ all_res = []
171
+ if self.type == "images":
172
+ for image in results["images"][: self.k]:
173
+ if not check_link_no_redirect(image['imageUrl']):
174
+ continue
175
+ all_res.append('Title: {}\nUrl: {}'.format(image['title'], image['imageUrl']))
176
+ return "\n-----\n".join(all_res)
177
+ return "\n-----\n".join(self._parse_snippets(results))
178
+
179
+ def _google_serper_api_results(
180
+ self, search_term: str, search_type: str = "search", **kwargs: Any
181
+ ) -> dict:
182
+ headers = {
183
+ "X-API-KEY": self.serper_api_key or "",
184
+ "Content-Type": "application/json",
185
+ }
186
+ params = {
187
+ "q": search_term,
188
+ **{key: value for key, value in kwargs.items() if value is not None},
189
+ }
190
+ response = requests.post(
191
+ f"https://google.serper.dev/{search_type}", headers=headers, params=params
192
+ )
193
+ response.raise_for_status()
194
+ search_results = response.json()
195
+ return search_results
196
+
197
+ async def _async_google_serper_search_results(
198
+ self, search_term: str, search_type: str = "search", **kwargs: Any
199
+ ) -> dict:
200
+ headers = {
201
+ "X-API-KEY": self.serper_api_key or "",
202
+ "Content-Type": "application/json",
203
+ }
204
+ url = f"https://google.serper.dev/{search_type}"
205
+ params = {
206
+ "q": search_term,
207
+ **{key: value for key, value in kwargs.items() if value is not None},
208
+ }
209
+
210
+ if not self.aiosession:
211
+ async with aiohttp.ClientSession() as session:
212
+ async with session.post(
213
+ url, params=params, headers=headers, raise_for_status=False
214
+ ) as response:
215
+ search_results = await response.json()
216
+ else:
217
+ async with self.aiosession.post(
218
+ url, params=params, headers=headers, raise_for_status=True
219
+ ) as response:
220
+ search_results = await response.json()
221
+
222
+ return search_results
223
+
224
+
225
+
226
+
227
+
228
+
229
+
230
+ from youtube_search import YoutubeSearch
231
+ def get_youtube_url(query:str) -> str:
232
+ num_results = 4
233
+ results = YoutubeSearch(query, num_results).to_json()
234
+ data = json.loads(results)
235
+ all_data = []
236
+ for video in data["videos"][:num_results]:
237
+ all_data.append('Title: {}\nUrl: {}'.format(video['title'], 'https://www.youtube.com' + video['url_suffix']))
238
+ return "\n-----\n".join(all_data)