import streamlit as st
from rag_retriever import initialize_llm, initialize_pinecone, create_query_engine, get_response
# Initialize LLM and Pinecone
initialize_llm()
index = initialize_pinecone()
query_engine = create_query_engine(index)
# Inject custom CSS for aesthetics
st.markdown("""
""", unsafe_allow_html=True)
# Add the image at the top
image_url = "https://th.bing.com/th/id/OIP.9aA0fOLzb4r7HUPzWKvUiwAAAA?rs=1&pid=ImgDetMain" # Replace this with your image URL
st.markdown(f"""
""", unsafe_allow_html=True)
# Create a Streamlit app
st.markdown("
KYC Virtual Assistant
", unsafe_allow_html=True)
st.markdown("### Ask me anything about our company!")
# Create a text input field for the user to enter their query
query = st.text_area("Your Question:", "", height=100)
# Create a button to trigger the response generation
if st.button("Get Answer"):
# Get the response from the query engine
response = get_response(query_engine, query)
# Display the response
st.markdown(f"
{response}
", unsafe_allow_html=True)
# Add some whitespace to make the app look more spacious
st.write("\n\n")
# Add a footer with some text
st.markdown("", unsafe_allow_html=True)