Spaces:
Runtime error
Runtime error
File size: 15,356 Bytes
401e785 0dae14f 401e785 d900b7e 401e785 d900b7e 401e785 d900b7e 401e785 8e170be 401e785 8e170be 401e785 8e170be 401e785 8e170be 401e785 8e170be 401e785 d900b7e 401e785 d900b7e 401e785 d900b7e 401e785 d900b7e 401e785 d900b7e 401e785 d900b7e 401e785 d900b7e 8e170be 401e785 8e170be 401e785 8e170be d900b7e 8e170be 401e785 d900b7e 401e785 d900b7e 401e785 d900b7e 401e785 d900b7e 401e785 d900b7e 401e785 d900b7e 401e785 8e170be 401e785 d900b7e 401e785 d900b7e 401e785 8e170be d900b7e 401e785 d900b7e 401e785 d900b7e 401e785 e504837 401e785 d900b7e 401e785 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import os
import time
import torch
import re
import difflib
from utils import *
from config import *
from transformers import GPT2Config
from abctoolkit.utils import Exclaim_re, Quote_re, SquareBracket_re, Barline_regexPattern
from abctoolkit.transpose import Note_list, Pitch_sign_list
from abctoolkit.duration import calculate_bartext_duration
import requests
import torch
from huggingface_hub import hf_hub_download
import logging
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
Note_list = Note_list + ['z', 'x']
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
patchilizer = Patchilizer()
patch_config = GPT2Config(num_hidden_layers=PATCH_NUM_LAYERS,
max_length=PATCH_LENGTH,
max_position_embeddings=PATCH_LENGTH,
n_embd=HIDDEN_SIZE,
num_attention_heads=HIDDEN_SIZE // 64,
vocab_size=1)
byte_config = GPT2Config(num_hidden_layers=CHAR_NUM_LAYERS,
max_length=PATCH_SIZE + 1,
max_position_embeddings=PATCH_SIZE + 1,
hidden_size=HIDDEN_SIZE,
num_attention_heads=HIDDEN_SIZE // 64,
vocab_size=128)
model = NotaGenLMHeadModel(encoder_config=patch_config, decoder_config=byte_config).to(device)
def download_model_weights():
weights_path = "weights_notagenx_p_size_16_p_length_1024_p_layers_20_h_size_1280.pth"
local_weights_path = os.path.join(os.getcwd(), weights_path)
# Check if weights already exist locally
if os.path.exists(local_weights_path):
logger.info(f"Model weights already exist at {local_weights_path}")
return local_weights_path
logger.info("Downloading model weights from HuggingFace Hub...")
try:
# Download from HuggingFace
downloaded_path = hf_hub_download(
repo_id="ElectricAlexis/NotaGen",
filename=weights_path,
local_dir=os.getcwd(),
local_dir_use_symlinks=False
)
logger.info(f"Model weights downloaded successfully to {downloaded_path}")
return downloaded_path
except Exception as e:
logger.error(f"Error downloading model weights: {str(e)}")
raise RuntimeError(f"Failed to download model weights: {str(e)}")
def prepare_model_for_kbit_training(model, use_gradient_checkpointing=True):
"""
Prepare model for k-bit training.
Features include:
1. Convert model to mixed precision (FP16).
2. Disable unnecessary gradient computations.
3. Enable gradient checkpointing (optional).
"""
# Convert model to mixed precision
model = model.to(dtype=torch.float16)
# Disable gradients for embedding layers
for param in model.parameters():
if param.dtype == torch.float32:
param.requires_grad = False
# Enable gradient checkpointing
if use_gradient_checkpointing:
model.gradient_checkpointing_enable()
return model
model = prepare_model_for_kbit_training(
model,
use_gradient_checkpointing=False
)
print("Parameter Number: " + str(sum(p.numel() for p in model.parameters() if p.requires_grad)))
# Download weights at startup
model_weights_path = download_model_weights()
checkpoint = torch.load(model_weights_path, map_location=torch.device(device))
model.load_state_dict(checkpoint['model'], strict=False)
model = model.to(device)
model.eval()
def postprocess_inst_names(abc_text):
with open('standard_inst_names.txt', 'r', encoding='utf-8') as f:
standard_instruments_list = [line.strip() for line in f if line.strip()]
with open('instrument_mapping.json', 'r', encoding='utf-8') as f:
instrument_mapping = json.load(f)
abc_lines = abc_text.split('\n')
abc_lines = list(filter(None, abc_lines))
abc_lines = [line + '\n' for line in abc_lines]
for i, line in enumerate(abc_lines):
if line.startswith('V:') and 'nm=' in line:
match = re.search(r'nm="([^"]*)"', line)
if match:
inst_name = match.group(1)
# Check if the instrument name is already standard
if inst_name in standard_instruments_list:
continue
# Find the most similar key in instrument_mapping
matching_key = difflib.get_close_matches(inst_name, list(instrument_mapping.keys()), n=1, cutoff=0.6)
if matching_key:
# Replace the instrument name with the standardized version
replacement = instrument_mapping[matching_key[0]]
new_line = line.replace(f'nm="{inst_name}"', f'nm="{replacement}"')
abc_lines[i] = new_line
# Combine the lines back into a single string
processed_abc_text = ''.join(abc_lines)
return processed_abc_text
def complete_brackets(s):
stack = []
bracket_map = {'{': '}', '[': ']', '(': ')'}
# Iterate through each character, handle bracket matching
for char in s:
if char in bracket_map:
stack.append(char)
elif char in bracket_map.values():
# Find the corresponding left bracket
for key, value in bracket_map.items():
if value == char:
if stack and stack[-1] == key:
stack.pop()
break # Found matching right bracket, process next character
# Complete missing right brackets (in reverse order of remaining left brackets in stack)
completion = ''.join(bracket_map[c] for c in reversed(stack))
return s + completion
def rest_unreduce(abc_lines):
tunebody_index = None
for i in range(len(abc_lines)):
if abc_lines[i].startswith('%%score'):
abc_lines[i] = complete_brackets(abc_lines[i])
if '[V:' in abc_lines[i]:
tunebody_index = i
break
metadata_lines = abc_lines[: tunebody_index]
tunebody_lines = abc_lines[tunebody_index:]
part_symbol_list = []
voice_group_list = []
for line in metadata_lines:
if line.startswith('%%score'):
for round_bracket_match in re.findall(r'\((.*?)\)', line):
voice_group_list.append(round_bracket_match.split())
existed_voices = [item for sublist in voice_group_list for item in sublist]
if line.startswith('V:'):
symbol = line.split()[0]
part_symbol_list.append(symbol)
if symbol[2:] not in existed_voices:
voice_group_list.append([symbol[2:]])
z_symbol_list = [] # voices that use z as rest
x_symbol_list = [] # voices that use x as rest
for voice_group in voice_group_list:
z_symbol_list.append('V:' + voice_group[0])
for j in range(1, len(voice_group)):
x_symbol_list.append('V:' + voice_group[j])
part_symbol_list.sort(key=lambda x: int(x[2:]))
unreduced_tunebody_lines = []
for i, line in enumerate(tunebody_lines):
unreduced_line = ''
line = re.sub(r'^\[r:[^\]]*\]', '', line)
pattern = r'\[V:(\d+)\](.*?)(?=\[V:|$)'
matches = re.findall(pattern, line)
line_bar_dict = {}
for match in matches:
key = f'V:{match[0]}'
value = match[1]
line_bar_dict[key] = value
# calculate duration and collect barline
dur_dict = {}
for symbol, bartext in line_bar_dict.items():
right_barline = ''.join(re.split(Barline_regexPattern, bartext)[-2:])
bartext = bartext[:-len(right_barline)]
try:
bar_dur = calculate_bartext_duration(bartext)
except:
bar_dur = None
if bar_dur is not None:
if bar_dur not in dur_dict.keys():
dur_dict[bar_dur] = 1
else:
dur_dict[bar_dur] += 1
try:
ref_dur = max(dur_dict, key=dur_dict.get)
except:
pass # use last ref_dur
if i == 0:
prefix_left_barline = line.split('[V:')[0]
else:
prefix_left_barline = ''
for symbol in part_symbol_list:
if symbol in line_bar_dict.keys():
symbol_bartext = line_bar_dict[symbol]
else:
if symbol in z_symbol_list:
symbol_bartext = prefix_left_barline + 'z' + str(ref_dur) + right_barline
elif symbol in x_symbol_list:
symbol_bartext = prefix_left_barline + 'x' + str(ref_dur) + right_barline
unreduced_line += '[' + symbol + ']' + symbol_bartext
unreduced_tunebody_lines.append(unreduced_line + '\n')
unreduced_lines = metadata_lines + unreduced_tunebody_lines
return unreduced_lines
def inference_patch(period, composer, instrumentation):
prompt_lines = [
'%' + period + '\n',
'%' + composer + '\n',
'%' + instrumentation + '\n']
while True:
failure_flag = False
bos_patch = [patchilizer.bos_token_id] * (PATCH_SIZE - 1) + [patchilizer.eos_token_id]
start_time = time.time()
prompt_patches = patchilizer.patchilize_metadata(prompt_lines)
byte_list = list(''.join(prompt_lines))
context_tunebody_byte_list = []
metadata_byte_list = []
print(''.join(byte_list), end='')
prompt_patches = [[ord(c) for c in patch] + [patchilizer.special_token_id] * (PATCH_SIZE - len(patch)) for patch
in prompt_patches]
prompt_patches.insert(0, bos_patch)
input_patches = torch.tensor(prompt_patches, device=device).reshape(1, -1)
end_flag = False
cut_index = None
tunebody_flag = False
with torch.inference_mode():
while True:
with torch.autocast(device_type='cuda', dtype=torch.float16):
predicted_patch = model.generate(input_patches.unsqueeze(0),
top_k=TOP_K,
top_p=TOP_P,
temperature=TEMPERATURE)
if not tunebody_flag and patchilizer.decode([predicted_patch]).startswith(
'[r:'): # 初次进入tunebody,必须以[r:0/开头
tunebody_flag = True
r0_patch = torch.tensor([ord(c) for c in '[r:0/']).unsqueeze(0).to(device)
temp_input_patches = torch.concat([input_patches, r0_patch], axis=-1)
predicted_patch = model.generate(temp_input_patches.unsqueeze(0),
top_k=TOP_K,
top_p=TOP_P,
temperature=TEMPERATURE)
predicted_patch = [ord(c) for c in '[r:0/'] + predicted_patch
if predicted_patch[0] == patchilizer.bos_token_id and predicted_patch[1] == patchilizer.eos_token_id:
end_flag = True
break
next_patch = patchilizer.decode([predicted_patch])
for char in next_patch:
byte_list.append(char)
if tunebody_flag:
context_tunebody_byte_list.append(char)
else:
metadata_byte_list.append(char)
print(char, end='')
patch_end_flag = False
for j in range(len(predicted_patch)):
if patch_end_flag:
predicted_patch[j] = patchilizer.special_token_id
if predicted_patch[j] == patchilizer.eos_token_id:
patch_end_flag = True
predicted_patch = torch.tensor([predicted_patch], device=device) # (1, 16)
input_patches = torch.cat([input_patches, predicted_patch], dim=1) # (1, 16 * patch_len)
if len(byte_list) > 102400:
failure_flag = True
break
if time.time() - start_time > 10 * 60:
failure_flag = True
break
if input_patches.shape[1] >= PATCH_LENGTH * PATCH_SIZE and not end_flag:
print('Stream generating...')
metadata = ''.join(metadata_byte_list)
context_tunebody = ''.join(context_tunebody_byte_list)
if '\n' not in context_tunebody:
break # Generated content is all metadata, abandon
context_tunebody_lines = context_tunebody.strip().split('\n')
if not context_tunebody.endswith('\n'):
context_tunebody_lines = [context_tunebody_lines[i] + '\n' for i in
range(len(context_tunebody_lines) - 1)] + [context_tunebody_lines[-1]]
else:
context_tunebody_lines = [context_tunebody_lines[i] + '\n' for i in
range(len(context_tunebody_lines))]
cut_index = len(context_tunebody_lines) // 2
abc_code_slice = metadata + ''.join(context_tunebody_lines[-cut_index:])
input_patches = patchilizer.encode_generate(abc_code_slice)
input_patches = [item for sublist in input_patches for item in sublist]
input_patches = torch.tensor([input_patches], device=device)
input_patches = input_patches.reshape(1, -1)
context_tunebody_byte_list = list(''.join(context_tunebody_lines[-cut_index:]))
if not failure_flag:
abc_text = ''.join(byte_list)
# unreduce
abc_lines = abc_text.split('\n')
abc_lines = list(filter(None, abc_lines))
abc_lines = [line + '\n' for line in abc_lines]
try:
unreduced_abc_lines = rest_unreduce(abc_lines)
except:
failure_flag = True
pass
else:
unreduced_abc_lines = [line for line in unreduced_abc_lines if
not (line.startswith('%') and not line.startswith('%%'))]
unreduced_abc_lines = ['X:1\n'] + unreduced_abc_lines
unreduced_abc_text = ''.join(unreduced_abc_lines)
return unreduced_abc_text
if __name__ == '__main__':
inference_patch('Classical', 'Beethoven, Ludwig van', 'Orchestral')
|