Spaces:
Running
Running
File size: 8,848 Bytes
47aeb66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
"""
File: face_utils.py
Author: Elena Ryumina and Dmitry Ryumin
Description: This module contains utility functions related to facial landmarks and image processing.
License: MIT License
"""
import numpy as np
import pandas as pd
import math
import subprocess
import torchaudio
import torch
import os
from PIL import Image
from torchvision import transforms
# Importing necessary components for the Gradio app
from app.config import NAME_EMO_AUDIO, DICT_CE, config_data
from app.plot import plot_compound_expression_prediction, plot_audio
def norm_coordinates(normalized_x, normalized_y, image_width, image_height):
x_px = min(math.floor(normalized_x * image_width), image_width - 1)
y_px = min(math.floor(normalized_y * image_height), image_height - 1)
return x_px, y_px
def get_box(fl, w, h):
idx_to_coors = {}
for idx, landmark in enumerate(fl.landmark):
landmark_px = norm_coordinates(landmark.x, landmark.y, w, h)
if landmark_px:
idx_to_coors[idx] = landmark_px
x_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 0])
y_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 1])
endX = np.max(np.asarray(list(idx_to_coors.values()))[:, 0])
endY = np.max(np.asarray(list(idx_to_coors.values()))[:, 1])
(startX, startY) = (max(0, x_min), max(0, y_min))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
return startX, startY, endX, endY
def pth_processing(fp):
class PreprocessInput(torch.nn.Module):
def init(self):
super(PreprocessInput, self).init()
def forward(self, x):
x = x.to(torch.float32)
x = torch.flip(x, dims=(0,))
x[0, :, :] -= 91.4953
x[1, :, :] -= 103.8827
x[2, :, :] -= 131.0912
return x
def get_img_torch(img, target_size=(224, 224)):
transform = transforms.Compose([transforms.PILToTensor(), PreprocessInput()])
img = img.resize(target_size, Image.Resampling.NEAREST)
img = transform(img)
img = torch.unsqueeze(img, 0)
return img
return get_img_torch(fp)
def convert_webm_to_mp4(input_file):
path_save = input_file.split('.')[0] + ".mp4"
if not os.path.exists(path_save):
ff_video = "ffmpeg -i {} -c:v copy -c:a aac -strict experimental {}".format(
input_file, path_save
)
subprocess.call(ff_video, shell=True)
return path_save
def convert_mp4_to_mp3(path, frame_indices, fps, sampling_rate=16000):
path_save = path.split('.')[0] + ".wav"
if not os.path.exists(path_save):
ff_audio = "ffmpeg -i {} -vn -acodec pcm_s16le -ar 44100 -ac 2 {}".format(
path, path_save
)
subprocess.call(ff_audio, shell=True)
wav, sr = torchaudio.load(path_save)
num_frames = wav.numpy().shape[1]
time_axis = [i / sr for i in range(num_frames)]
plt = plot_audio(time_axis, wav, frame_indices, fps, (12, 2))
if wav.size(0) > 1:
wav = wav.mean(dim=0, keepdim=True)
if sr != sampling_rate:
transform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=sampling_rate)
wav = transform(wav)
sr = sampling_rate
assert sr == sampling_rate
return wav.squeeze(0), plt
def pad_wav(wav, max_length):
current_length = len(wav)
if current_length < max_length:
repetitions = (max_length + current_length - 1) // current_length
wav = torch.cat([wav] * repetitions, dim=0)[:max_length]
elif current_length > max_length:
wav = wav[:max_length]
return wav
def pad_wav_zeros(wav, max_length, mode="constant"):
if mode == "mean":
wav = torch.nn.functional.pad(
wav,
(0, max(0, max_length - wav.shape[0])),
mode="constant",
value=torch.mean(wav),
)
else:
wav = torch.nn.functional.pad(
wav, (0, max(0, max_length - wav.shape[0])), mode=mode
)
return wav
def softmax(matrix):
exp_matrix = np.exp(matrix - np.max(matrix, axis=1, keepdims=True))
return exp_matrix / np.sum(exp_matrix, axis=1, keepdims=True)
def get_compound_expression(pred, com_emo):
pred = np.asarray(pred)
prob = np.zeros((len(pred), len(com_emo)))
for idx, (_, v) in enumerate(com_emo.items()):
idx_1 = v[0]
idx_2 = v[1]
prob[:, idx] = pred[:, idx_1] + pred[:, idx_2]
return prob
def get_image_location(curr_video, frame):
frame = int(frame.split(".")[0]) + 1
frame = str(frame).zfill(5) + ".jpg"
return f"{curr_video}/{frame}"
def save_txt(column_names, file_names, labels, save_name):
data_lines = [",".join(column_names)]
for file_name, label in zip(file_names, labels):
data_lines.append(f"{file_name},{label}")
with open(save_name, "w") as file:
for line in data_lines:
file.write(line + "\n")
def get_mix_pred(emo_pred, ce_prob):
pred = []
for idx, curr_pred in enumerate(emo_pred):
if np.max(curr_pred) > config_data.CONFIDENCE_BE:
pred.append(np.argmax(curr_pred))
else:
pred.append(ce_prob[idx]+6)
return pred
def get_c_expr_db_pred(
stat_df: pd.DataFrame,
dyn_df: pd.DataFrame,
audio_df: pd.DataFrame,
name_video: str,
weights_1: list[float],
frame_indices: list[int],
) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, list[str]]:
"""
Predict compound expressions using audio-visual emotional probabilities, optimized weights, and rules.
Args:
stat_df (pd.DataFrame): DataFrame containing static visual probabilities.
dyn_df (pd.DataFrame): DataFrame containing dynamic visual probabilities.
audio_df (pd.DataFrame): DataFrame containing audio probabilities.
name_video (str): Name of the video.
weights_1 (List[float]): List of weights for the Dirichlet-based fusion.
Returns:
Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, List[str]]: Predictions for compound expressions,
and list of image locations.
"""
stat_df["image_location"] = [
f"{name_video}/{str(f+1).zfill(5)}.jpg" for f in stat_df.index
]
dyn_df["image_location"] = [
f"{name_video}/{str(f+1).zfill(5)}.jpg" for f in dyn_df.index
]
image_location = dyn_df.image_location.tolist()
stat_df = stat_df[stat_df.image_location.isin(image_location)][NAME_EMO_AUDIO[:-1]].values
dyn_df = softmax(
dyn_df[dyn_df.image_location.isin(image_location)][NAME_EMO_AUDIO[:-1]].values
)
audio_df = audio_df.groupby(["frames"]).mean().reset_index()
audio_df = audio_df.rename(columns={"frames": "image_location"})
audio_df["image_location"] = [
get_image_location(name_video, i) for i in audio_df.image_location
]
audio_df = softmax(
audio_df[audio_df.image_location.isin(image_location)][NAME_EMO_AUDIO[:-1]].values
)
if len(image_location) > len(audio_df):
last_pred_audio = audio_df[-1]
audio_df = np.vstack(
(audio_df, [last_pred_audio] * (len(image_location) - len(audio_df)))
)
predictions = [stat_df, dyn_df, audio_df]
num_predictions = len(predictions)
if weights_1:
final_predictions = predictions[0] * weights_1[0]
for i in range(1, num_predictions):
final_predictions += predictions[i] * weights_1[i]
else:
final_predictions = np.sum(predictions, axis=0) / num_predictions
av_prob = np.argmax(get_compound_expression(
final_predictions, DICT_CE,
), axis=1)
vs_prob = get_compound_expression(
predictions[0], DICT_CE)
vd_prob = get_compound_expression(
predictions[1], DICT_CE)
a_prob = get_compound_expression(
predictions[2], DICT_CE)
av_pred = get_mix_pred(final_predictions, av_prob)
vs_pred = get_mix_pred(predictions[0], np.argmax(vs_prob, axis=1))
vd_pred = get_mix_pred(predictions[1], np.argmax(vd_prob, axis=1))
a_pred = get_mix_pred(predictions[2], np.argmax(a_prob, axis=1))
dict_pred_final = {'Audio-visual fusion':av_pred, 'Static visual model':vs_pred,'Dynamic visual model':vd_pred,'Audio model':a_pred}
plt = plot_compound_expression_prediction(
dict_preds = dict_pred_final,
save_path = None,
frame_indices = frame_indices,
title = "Basic emotion and compound expression predictions")
df = pd.DataFrame(dict_pred_final)
return df, plt
def get_evenly_spaced_frame_indices(total_frames, num_frames=10):
if total_frames <= num_frames:
return list(range(total_frames))
step = total_frames / num_frames
return [int(np.round(i * step)) for i in range(num_frames)] |