ElenaRyumina's picture
Summary
6be1573
raw
history blame
4 kB
"""
File: app.py
Author: Elena Ryumina and Dmitry Ryumin
Description: Description: Main application file for Facial_Expression_Recognition.
The file defines the Gradio interface, sets up the main blocks,
and includes event handlers for various components.
License: MIT License
"""
import gradio as gr
# Importing necessary components for the Gradio app
from app.description import DESCRIPTION
from app.app_utils import preprocess_and_predict
def clear():
return (
gr.Image(value=None, type="pil"),
gr.Image(value=None, scale=1, elem_classes="dl2"),
gr.Label(value=None, num_top_classes=3, scale=1, elem_classes="dl3"),
)
md = """
App developers: ``Elena Ryumina`` and ``Dmitry Ryumin``
Methodology developers: ``Elena Ryumina``, ``Denis Dresvyanskiy`` and ``Alexey Karpov``
Model developer: ``Elena Ryumina``
TensorFlow to PyTorch model converter: ``Maxim Markitantov`` and ``Elena Ryumina``
Citation
If you are using EMO-AffectNetModel in your research, please consider to cite research [paper](https://www.sciencedirect.com/science/article/pii/S0925231222012656). Here is an example of BibTeX entry:
<div class="highlight highlight-text-bibtex notranslate position-relative overflow-auto" dir="auto"><pre><span class="pl-k">@article</span>{<span class="pl-en">RYUMINA2022</span>,
<span class="pl-s">title</span> = <span class="pl-s"><span class="pl-pds">{</span>In Search of a Robust Facial Expressions Recognition Model: A Large-Scale Visual Cross-Corpus Study<span class="pl-pds">}</span></span>,
<span class="pl-s">author</span> = <span class="pl-s"><span class="pl-pds">{</span>Elena Ryumina and Denis Dresvyanskiy and Alexey Karpov<span class="pl-pds">}</span></span>,
<span class="pl-s">journal</span> = <span class="pl-s"><span class="pl-pds">{</span>Neurocomputing<span class="pl-pds">}</span></span>,
<span class="pl-s">year</span> = <span class="pl-s"><span class="pl-pds">{</span>2022<span class="pl-pds">}</span></span>,
<span class="pl-s">doi</span> = <span class="pl-s"><span class="pl-pds">{</span>10.1016/j.neucom.2022.10.013<span class="pl-pds">}</span></span>,
<span class="pl-s">url</span> = <span class="pl-s"><span class="pl-pds">{</span>https://www.sciencedirect.com/science/article/pii/S0925231222012656<span class="pl-pds">}</span></span>,
}</div>
"""
with gr.Blocks(css="app.css") as demo:
with gr.Tab("App"):
gr.Markdown(value=DESCRIPTION)
with gr.Row():
with gr.Column(scale=2, elem_classes="dl1"):
input_image = gr.Image(type="pil")
with gr.Row():
clear_btn = gr.Button(
value="Clear", interactive=True, scale=1, elem_classes="clear"
)
submit = gr.Button(
value="Submit", interactive=True, scale=1, elem_classes="submit"
)
with gr.Column(scale=1, elem_classes="dl4"):
output_image = gr.Image(scale=1, elem_classes="dl2")
output_label = gr.Label(num_top_classes=3, scale=1, elem_classes="dl3")
gr.Examples(
[
"images/fig7.jpg",
"images/fig1.jpg",
"images/fig2.jpg",
"images/fig3.jpg",
"images/fig4.jpg",
"images/fig5.jpg",
"images/fig6.jpg",
],
[input_image],
)
with gr.Tab("Authors"):
gr.Markdown(value=md)
submit.click(
fn=preprocess_and_predict,
inputs=[input_image],
outputs=[output_image, output_label],
queue=True,
)
clear_btn.click(
fn=clear,
inputs=[],
outputs=[input_image, output_image, output_label],
queue=True,
)
if __name__ == "__main__":
demo.queue(api_open=False).launch(share=False)