ElenaRyumina
commited on
Commit
β’
2db5685
1
Parent(s):
007e35f
Summary
Browse files- app.py +10 -1
- app/app_utils.py +10 -7
app.py
CHANGED
@@ -53,7 +53,16 @@ with gr.Blocks(css="app.css") as demo:
|
|
53 |
output_statistics = gr.Plot(label="Statistics of emotions", elem_classes="stat")
|
54 |
gr.Examples(
|
55 |
["videos/video1.mp4",
|
56 |
-
"videos/video2.mp4"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
[input_video],
|
58 |
)
|
59 |
|
|
|
53 |
output_statistics = gr.Plot(label="Statistics of emotions", elem_classes="stat")
|
54 |
gr.Examples(
|
55 |
["videos/video1.mp4",
|
56 |
+
"videos/video2.mp4",
|
57 |
+
"new_videos/01.mp4",
|
58 |
+
"new_videos/02.mp4",
|
59 |
+
"new_videos/14.mp4",
|
60 |
+
"new_videos/16.mp4",
|
61 |
+
"new_videos/20.mp4",
|
62 |
+
"new_videos/36.mp4",
|
63 |
+
"new_videos/38.mp4",
|
64 |
+
"new_videos/45.mp4",
|
65 |
+
],
|
66 |
[input_video],
|
67 |
)
|
68 |
|
app/app_utils.py
CHANGED
@@ -44,11 +44,12 @@ def preprocess_image_and_predict(inp):
|
|
44 |
startX, startY, endX, endY = get_box(fl, w, h)
|
45 |
cur_face = inp[startY:endY, startX:endX]
|
46 |
cur_face_n = pth_processing(Image.fromarray(cur_face))
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
52 |
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
|
53 |
grayscale_cam = cam(input_tensor=cur_face_n)
|
54 |
grayscale_cam = grayscale_cam[0, :]
|
@@ -104,7 +105,8 @@ def preprocess_video_and_predict(video):
|
|
104 |
|
105 |
if count_face%config_data.FRAME_DOWNSAMPLING == 0:
|
106 |
cur_face_copy = pth_processing(Image.fromarray(cur_face))
|
107 |
-
|
|
|
108 |
|
109 |
grayscale_cam = cam(input_tensor=cur_face_copy)
|
110 |
grayscale_cam = grayscale_cam[0, :]
|
@@ -120,7 +122,8 @@ def preprocess_video_and_predict(video):
|
|
120 |
|
121 |
lstm_f = torch.from_numpy(np.vstack(lstm_features))
|
122 |
lstm_f = torch.unsqueeze(lstm_f, 0)
|
123 |
-
|
|
|
124 |
last_output = output
|
125 |
|
126 |
if count_face == 0:
|
|
|
44 |
startX, startY, endX, endY = get_box(fl, w, h)
|
45 |
cur_face = inp[startY:endY, startX:endX]
|
46 |
cur_face_n = pth_processing(Image.fromarray(cur_face))
|
47 |
+
with torch.no_grad():
|
48 |
+
prediction = (
|
49 |
+
torch.nn.functional.softmax(pth_model_static(cur_face_n), dim=1)
|
50 |
+
.detach()
|
51 |
+
.numpy()[0]
|
52 |
+
)
|
53 |
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
|
54 |
grayscale_cam = cam(input_tensor=cur_face_n)
|
55 |
grayscale_cam = grayscale_cam[0, :]
|
|
|
105 |
|
106 |
if count_face%config_data.FRAME_DOWNSAMPLING == 0:
|
107 |
cur_face_copy = pth_processing(Image.fromarray(cur_face))
|
108 |
+
with torch.no_grad():
|
109 |
+
features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
|
110 |
|
111 |
grayscale_cam = cam(input_tensor=cur_face_copy)
|
112 |
grayscale_cam = grayscale_cam[0, :]
|
|
|
122 |
|
123 |
lstm_f = torch.from_numpy(np.vstack(lstm_features))
|
124 |
lstm_f = torch.unsqueeze(lstm_f, 0)
|
125 |
+
with torch.no_grad():
|
126 |
+
output = pth_model_dynamic(lstm_f).detach().numpy()
|
127 |
last_output = output
|
128 |
|
129 |
if count_face == 0:
|