""" File: app.py Author: Elena Ryumina and Dmitry Ryumin Description: Description: Main application file for Facial_Expression_Recognition. The file defines the Gradio interface, sets up the main blocks, and includes event handlers for various components. License: MIT License """ import gradio as gr # Importing necessary components for the Gradio app from app.description import DESCRIPTION_STATIC, DESCRIPTION_DYNAMIC from app.authors import AUTHORS from app.app_utils import preprocess_image_and_predict, preprocess_video_and_predict def clear_static_info(): return ( gr.Image(value=None, type="pil"), gr.Image(value=None, scale=1, elem_classes="dl5"), gr.Image(value=None, scale=1, elem_classes="dl2"), gr.Label(value=None, num_top_classes=3, scale=1, elem_classes="dl3"), ) def clear_dynamic_info(): return ( gr.Video(value=None), gr.Video(value=None), gr.Video(value=None), gr.Video(value=None), gr.Plot(value=None), ) with gr.Blocks(css="app.css") as demo: with gr.Tab("Dynamic App"): gr.Markdown(value=DESCRIPTION_DYNAMIC) with gr.Row(): with gr.Column(scale=2): input_video = gr.Video(elem_classes="video1") with gr.Row(): clear_btn_dynamic = gr.Button( value="Clear", interactive=True, scale=1 ) submit_dynamic = gr.Button( value="Submit", interactive=True, scale=1, elem_classes="submit" ) with gr.Column(scale=2, elem_classes="dl4"): with gr.Row(): output_video = gr.Video(label="Original video", scale=1, elem_classes="video2") output_face = gr.Video(label="Pre-processed video", scale=1, elem_classes="video3") output_heatmaps = gr.Video(label="Heatmaps", scale=1, elem_classes="video4") output_statistics = gr.Plot(label="Statistics of emotions", elem_classes="stat") gr.Examples( ["videos/video1.mp4", "videos/video2.mp4"], [input_video], ) with gr.Tab("Static App"): gr.Markdown(value=DESCRIPTION_STATIC) with gr.Row(): with gr.Column(scale=2, elem_classes="dl1"): input_image = gr.Image(label="Original image", type="pil") with gr.Row(): clear_btn = gr.Button( value="Clear", interactive=True, scale=1, elem_classes="clear" ) submit = gr.Button( value="Submit", interactive=True, scale=1, elem_classes="submit" ) with gr.Column(scale=1, elem_classes="dl4"): with gr.Row(): output_image = gr.Image(label="Face", scale=1, elem_classes="dl5") output_heatmap = gr.Image(label="Heatmap", scale=1, elem_classes="dl2") output_label = gr.Label(num_top_classes=3, scale=1, elem_classes="dl3") gr.Examples( [ "images/fig7.jpg", "images/fig1.jpg", "images/fig2.jpg", "images/fig3.jpg", "images/fig4.jpg", "images/fig5.jpg", "images/fig6.jpg", ], [input_image], ) with gr.Tab("Authors"): gr.Markdown(value=AUTHORS) submit.click( fn=preprocess_image_and_predict, inputs=[input_image], outputs=[output_image, output_heatmap, output_label], queue=True, ) clear_btn.click( fn=clear_static_info, inputs=[], outputs=[input_image, output_image, output_heatmap, output_label], queue=True, ) submit_dynamic.click( fn=preprocess_video_and_predict, inputs=input_video, outputs=[ output_video, output_face, output_heatmaps, output_statistics ], queue=True, ) clear_btn_dynamic.click( fn=clear_dynamic_info, inputs=[], outputs=[ input_video, output_video, output_face, output_heatmaps, output_statistics ], queue=True, ) if __name__ == "__main__": demo.queue(api_open=False).launch(share=False)