""" File: app_utils.py Author: Elena Ryumina and Dmitry Ryumin Description: This module contains utility functions for facial expression recognition application. License: MIT License """ import torch import numpy as np import mediapipe as mp from PIL import Image import cv2 from pytorch_grad_cam.utils.image import show_cam_on_image # Importing necessary components for the Gradio app from app.model import pth_model_static, pth_model_dynamic, cam, pth_processing from app.face_utils import get_box, display_info from app.config import DICT_EMO, config_data from app.plot import statistics_plot mp_face_mesh = mp.solutions.face_mesh def preprocess_image_and_predict(inp): inp = np.array(inp) if inp is None: return None, None, None try: h, w = inp.shape[:2] except Exception: return None, None, None with mp_face_mesh.FaceMesh( max_num_faces=1, refine_landmarks=False, min_detection_confidence=0.5, min_tracking_confidence=0.5, ) as face_mesh: results = face_mesh.process(inp) if results.multi_face_landmarks: for fl in results.multi_face_landmarks: startX, startY, endX, endY = get_box(fl, w, h) cur_face = inp[startY:endY, startX:endX] cur_face_n = pth_processing(Image.fromarray(cur_face)) with torch.no_grad(): prediction = ( torch.nn.functional.softmax(pth_model_static(cur_face_n), dim=1) .detach() .numpy()[0] ) confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)} grayscale_cam = cam(input_tensor=cur_face_n) grayscale_cam = grayscale_cam[0, :] cur_face_hm = cv2.resize(cur_face,(224,224)) cur_face_hm = np.float32(cur_face_hm) / 255 heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True) return cur_face, heatmap, confidences else: return None, None, None def preprocess_video_and_predict(video): cap = cv2.VideoCapture(video) w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = np.round(cap.get(cv2.CAP_PROP_FPS)) path_save_video_face = 'result_face.mp4' vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224)) path_save_video_hm = 'result_hm.mp4' vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224)) lstm_features = [] count_frame = 1 count_face = 0 probs = [] frames = [] last_output = None last_heatmap = None cur_face = None with mp_face_mesh.FaceMesh( max_num_faces=1, refine_landmarks=False, min_detection_confidence=0.5, min_tracking_confidence=0.5) as face_mesh: while cap.isOpened(): _, frame = cap.read() if frame is None: break frame_copy = frame.copy() frame_copy.flags.writeable = False frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) results = face_mesh.process(frame_copy) frame_copy.flags.writeable = True if results.multi_face_landmarks: for fl in results.multi_face_landmarks: startX, startY, endX, endY = get_box(fl, w, h) cur_face = frame_copy[startY:endY, startX: endX] if count_face%config_data.FRAME_DOWNSAMPLING == 0: cur_face_copy = pth_processing(Image.fromarray(cur_face)) with torch.no_grad(): features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy() grayscale_cam = cam(input_tensor=cur_face_copy) grayscale_cam = grayscale_cam[0, :] cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA) cur_face_hm = np.float32(cur_face_hm) / 255 heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False) last_heatmap = heatmap if len(lstm_features) == 0: lstm_features = [features]*10 else: lstm_features = lstm_features[1:] + [features] lstm_f = torch.from_numpy(np.vstack(lstm_features)) lstm_f = torch.unsqueeze(lstm_f, 0) with torch.no_grad(): output = pth_model_dynamic(lstm_f).detach().numpy() last_output = output if count_face == 0: count_face += 1 else: if last_output is not None: output = last_output heatmap = last_heatmap elif last_output is None: output = np.empty((1, 7)) output[:] = np.nan probs.append(output[0]) frames.append(count_frame) else: if last_output is not None: lstm_features = [] empty = np.empty((7)) empty[:] = np.nan probs.append(empty) frames.append(count_frame) if cur_face is not None: heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3) cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR) cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA) cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3) vid_writer_face.write(cur_face) vid_writer_hm.write(heatmap_f) count_frame += 1 if count_face != 0: count_face += 1 vid_writer_face.release() vid_writer_hm.release() stat = statistics_plot(frames, probs) if not stat: return None, None, None, None return video, path_save_video_face, path_save_video_hm, stat