File size: 16,475 Bytes
d0f716d
 
 
 
 
 
 
b0f25b3
1bf4da3
d0f716d
aa2aec1
d0f716d
 
 
1bf4da3
c0f084a
 
 
 
 
aa2aec1
d0f716d
 
c0f084a
 
0e30f40
 
c0f084a
 
 
 
 
0e30f40
 
 
1bf4da3
 
 
 
 
 
 
 
 
 
 
 
1a72a47
1bf4da3
 
 
 
 
1a72a47
 
 
 
 
 
 
 
1bf4da3
 
 
 
b0f25b3
aa2aec1
 
 
1bf4da3
 
aa2aec1
 
0e30f40
 
 
 
 
 
c0f084a
 
 
 
 
 
 
 
b0f25b3
1a72a47
1bf4da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a72a47
 
 
 
 
 
 
 
 
1bf4da3
 
 
 
 
 
 
1a72a47
1bf4da3
1a72a47
 
 
1bf4da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0f084a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bf4da3
 
 
c0f084a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bf4da3
 
 
c0f084a
 
 
 
 
1bf4da3
c0f084a
 
 
 
0e30f40
b0f25b3
 
 
 
aa2aec1
c0f084a
b0f25b3
 
0e30f40
b0f25b3
aa2aec1
 
 
 
 
 
c0f084a
 
 
 
aa2aec1
 
b0f25b3
aa2aec1
 
 
 
 
 
 
b0f25b3
 
aa2aec1
 
b0f25b3
aa2aec1
 
b0f25b3
 
 
 
 
 
 
 
 
0e30f40
 
 
1bf4da3
 
 
0e30f40
 
 
 
 
1bf4da3
0e30f40
 
 
 
 
 
 
c0f084a
 
 
0e30f40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0f084a
0e30f40
c0f084a
0e30f40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0f084a
 
 
1bf4da3
 
 
c0f084a
 
 
 
 
1bf4da3
c0f084a
 
 
 
 
 
1bf4da3
c0f084a
 
 
 
 
 
1bf4da3
c0f084a
 
 
1bf4da3
 
c0f084a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f25b3
 
 
1bf4da3
 
 
aa2aec1
 
 
 
 
1bf4da3
aa2aec1
b0f25b3
 
 
 
 
 
aa2aec1
 
b0f25b3
 
 
 
 
 
 
 
 
 
 
1bf4da3
 
 
aa2aec1
b0f25b3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
"""
File: calculate_practical_tasks.py
Author: Elena Ryumina and Dmitry Ryumin
Description: Event handler for Gradio app to calculate practical tasks.
License: MIT License
"""

from app.oceanai_init import b5
import re
import gradio as gr
from pathlib import Path

# Importing necessary components for the Gradio app
from app.config import config_data
from app.mbti_description import MBTI_DESCRIPTION, MBTI_DATA
from app.utils import (
    read_csv_file,
    apply_rounding_and_rename_columns,
    preprocess_scores_df,
)
from app.components import html_message, dataframe, files_create_ui, video_create_ui


def colleague_type(subtask):
    return "minor" if "junior" in subtask.lower() else "major"


def consumer_preferences(subtask):
    return (
        config_data.Filenames_CAR_CHARACTERISTICS
        if "mobile device" in subtask.lower()
        else config_data.Filenames_MDA_CATEGORIES
    )


def remove_parentheses(s):
    return re.sub(r"\s*\([^)]*\)", "", s)


def extract_text_in_parentheses(s):
    result = re.search(r"\(([^)]+)\)", s)
    if result:
        return result.group(1)
    else:
        return None


def compare_strings(original, comparison, prev=False):
    result = []
    prev_class = None

    for orig_char, comp_char in zip(original, comparison):
        curr_class = "true" if orig_char == comp_char else "err"
        if not prev:
            result.append(f"<span class='{curr_class}'>{comp_char}</span>")
        else:
            if curr_class != prev_class:
                result.append("</span>" if prev_class else "")
                result.append(f"<span class='{curr_class}'>")
                prev_class = curr_class
            result.append(comp_char)

    return f"<span class='wrapper_mbti'>{''.join(result + [f'</span>' if prev_class else ''])}</span>"


def event_handler_calculate_practical_task_blocks(
    files,
    practical_subtasks,
    pt_scores,
    dropdown_mbti,
    threshold_mbti,
    threshold_professional_skills,
    dropdown_professional_skills,
    target_score_ope,
    target_score_con,
    target_score_ext,
    target_score_agr,
    target_score_nneu,
    equal_coefficient,
    number_priority,
    number_importance_traits,
    threshold_consumer_preferences,
    number_openness,
    number_conscientiousness,
    number_extraversion,
    number_agreeableness,
    number_non_neuroticism,
):
    if practical_subtasks.lower() == "16 personality types of mbti":
        df_correlation_coefficients = read_csv_file(config_data.Links_MBTI)

        pt_scores_copy = pt_scores.iloc[:, 1:].copy()

        preprocess_scores_df(pt_scores_copy, "Person ID")

        b5._professional_match(
            df_files=pt_scores_copy,
            correlation_coefficients=df_correlation_coefficients,
            personality_type=remove_parentheses(dropdown_mbti),
            threshold=threshold_mbti,
            out=False,
        )

        df = apply_rounding_and_rename_columns(b5.df_files_MBTI_job_match_)

        df_hidden = df.drop(
            columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS
            + config_data.Settings_DROPDOWN_MBTI_DEL_COLS
        )

        df_hidden.rename(
            columns={
                "Path": "Filename",
                "MBTI": "Personality Type",
                "MBTI_Score": "Personality Type Score",
            },
            inplace=True,
        )

        df_hidden.to_csv(config_data.Filenames_MBTI_JOB)

        df_hidden.reset_index(inplace=True)

        person_id = int(df_hidden.iloc[0]["Person ID"]) - 1

        short_mbti = extract_text_in_parentheses(dropdown_mbti)
        mbti_values = df_hidden["Personality Type"].tolist()

        df_hidden["Personality Type"] = [
            compare_strings(short_mbti, mbti, False) for mbti in mbti_values
        ]

        return (
            gr.Row(visible=True),
            gr.Column(visible=True),
            dataframe(
                headers=df_hidden.columns.tolist(),
                values=df_hidden.values.tolist(),
                visible=True,
            ),
            files_create_ui(
                config_data.Filenames_MBTI_JOB,
                "single",
                [".csv"],
                config_data.OtherMessages_EXPORT_MBTI,
                True,
                False,
                True,
                "csv-container",
            ),
            gr.Accordion(
                label=config_data.Labels_NOTE_MBTI_LABEL,
                open=False,
                visible=True,
            ),
            gr.HTML(value=MBTI_DESCRIPTION, visible=True),
            dataframe(
                headers=MBTI_DATA.columns.tolist(),
                values=MBTI_DATA.values.tolist(),
                visible=True,
                elem_classes="mbti-dataframe",
            ),
            video_create_ui(
                value=files[person_id],
                file_name=Path(files[person_id]).name,
                label="Best Person ID - " + str(person_id + 1),
                visible=True,
                elem_classes="video-sorted-container",
            ),
            html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False),
        )
    elif practical_subtasks.lower() == "professional groups":
        sum_weights = sum(
            [
                number_openness,
                number_conscientiousness,
                number_extraversion,
                number_agreeableness,
                number_non_neuroticism,
            ]
        )

        if sum_weights != 100:
            gr.Warning(config_data.InformationMessages_SUM_WEIGHTS.format(sum_weights))

            return (
                gr.Row(visible=False),
                gr.Column(visible=False),
                dataframe(visible=False),
                files_create_ui(
                    None,
                    "single",
                    [".csv"],
                    config_data.OtherMessages_EXPORT_PS,
                    True,
                    False,
                    False,
                    "csv-container",
                ),
                gr.Accordion(visible=False),
                gr.HTML(visible=False),
                dataframe(visible=False),
                video_create_ui(visible=False),
                html_message(
                    config_data.InformationMessages_SUM_WEIGHTS.format(sum_weights),
                    False,
                    True,
                ),
            )
        else:
            b5._candidate_ranking(
                df_files=pt_scores.iloc[:, 1:],
                weigths_openness=number_openness,
                weigths_conscientiousness=number_conscientiousness,
                weigths_extraversion=number_extraversion,
                weigths_agreeableness=number_agreeableness,
                weigths_non_neuroticism=number_non_neuroticism,
                out=False,
            )

            df = apply_rounding_and_rename_columns(b5.df_files_ranking_)

            df_hidden = df.drop(columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS)

            df_hidden.to_csv(config_data.Filenames_POTENTIAL_CANDIDATES)

            df_hidden.reset_index(inplace=True)

            person_id = int(df_hidden.iloc[0]["Person ID"]) - 1

            return (
                gr.Row(visible=True),
                gr.Column(visible=True),
                dataframe(
                    headers=df_hidden.columns.tolist(),
                    values=df_hidden.values.tolist(),
                    visible=True,
                ),
                files_create_ui(
                    config_data.Filenames_POTENTIAL_CANDIDATES,
                    "single",
                    [".csv"],
                    config_data.OtherMessages_EXPORT_PG,
                    True,
                    False,
                    True,
                    "csv-container",
                ),
                gr.Accordion(visible=False),
                gr.HTML(visible=False),
                dataframe(visible=False),
                video_create_ui(
                    value=files[person_id],
                    file_name=Path(files[person_id]).name,
                    label="Best Person ID - " + str(person_id + 1),
                    visible=True,
                    elem_classes="video-sorted-container",
                ),
                html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False),
            )
    elif practical_subtasks.lower() == "professional skills":
        df_professional_skills = read_csv_file(config_data.Links_PROFESSIONAL_SKILLS)

        b5._priority_skill_calculation(
            df_files=pt_scores.iloc[:, 1:],
            correlation_coefficients=df_professional_skills,
            threshold=threshold_professional_skills,
            out=False,
        )

        df = apply_rounding_and_rename_columns(b5.df_files_priority_skill_)

        professional_skills_list = (
            config_data.Settings_DROPDOWN_PROFESSIONAL_SKILLS.copy()
        )

        professional_skills_list.remove(dropdown_professional_skills)

        df_hidden = df.drop(
            columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS
            + professional_skills_list
        )

        df_hidden.to_csv(config_data.Filenames_PT_SKILLS_SCORES)

        df_hidden.reset_index(inplace=True)

        df_hidden = df_hidden.sort_values(
            by=[dropdown_professional_skills], ascending=False
        )

        person_id = int(df_hidden.iloc[0]["Person ID"]) - 1

        return (
            gr.Row(visible=True),
            gr.Column(visible=True),
            dataframe(
                headers=df_hidden.columns.tolist(),
                values=df_hidden.values.tolist(),
                visible=True,
            ),
            files_create_ui(
                config_data.Filenames_PT_SKILLS_SCORES,
                "single",
                [".csv"],
                config_data.OtherMessages_EXPORT_PS,
                True,
                False,
                True,
                "csv-container",
            ),
            gr.Accordion(visible=False),
            gr.HTML(visible=False),
            dataframe(visible=False),
            video_create_ui(
                value=files[person_id],
                file_name=Path(files[person_id]).name,
                label="Best Person ID - " + str(person_id + 1),
                visible=True,
                elem_classes="video-sorted-container",
            ),
            html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False),
        )
    elif (
        practical_subtasks.lower() == "finding a suitable junior colleague"
        or practical_subtasks.lower() == "finding a suitable senior colleague"
    ):
        df_correlation_coefficients = read_csv_file(
            config_data.Links_FINDING_COLLEAGUE, ["ID"]
        )

        b5._colleague_ranking(
            df_files=pt_scores.iloc[:, 1:],
            correlation_coefficients=df_correlation_coefficients,
            target_scores=[
                target_score_ope,
                target_score_con,
                target_score_ext,
                target_score_agr,
                target_score_nneu,
            ],
            colleague=colleague_type(practical_subtasks),
            equal_coefficients=equal_coefficient,
            out=False,
        )

        df = apply_rounding_and_rename_columns(b5.df_files_colleague_)

        df_hidden = df.drop(columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS)

        df_hidden.to_csv(
            colleague_type(practical_subtasks) + config_data.Filenames_COLLEAGUE_RANKING
        )

        df_hidden.reset_index(inplace=True)

        person_id = int(df_hidden.iloc[0]["Person ID"]) - 1

        return (
            gr.Row(visible=True),
            gr.Column(visible=True),
            dataframe(
                headers=df_hidden.columns.tolist(),
                values=df_hidden.values.tolist(),
                visible=True,
            ),
            files_create_ui(
                colleague_type(practical_subtasks)
                + config_data.Filenames_COLLEAGUE_RANKING,
                "single",
                [".csv"],
                config_data.OtherMessages_EXPORT_WT,
                True,
                False,
                True,
                "csv-container",
            ),
            gr.Accordion(visible=False),
            gr.HTML(visible=False),
            dataframe(visible=False),
            video_create_ui(
                value=files[person_id],
                file_name=Path(files[person_id]).name,
                label="Best Person ID - " + str(person_id + 1),
                visible=True,
                elem_classes="video-sorted-container",
            ),
            html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False),
        )
    elif (
        practical_subtasks.lower() == "car characteristics"
        or practical_subtasks.lower() == "mobile device application categories"
        or practical_subtasks.lower() == "clothing style correlation"
    ):
        if practical_subtasks.lower() == "car characteristics":
            df_correlation_coefficients = read_csv_file(
                config_data.Links_CAR_CHARACTERISTICS,
                ["Style and performance", "Safety and practicality"],
            )
        elif practical_subtasks.lower() == "mobile device application categories":
            df_correlation_coefficients = read_csv_file(
                config_data.Links_MDA_CATEGORIES
            )
        elif practical_subtasks.lower() == "clothing style correlation":
            df_correlation_coefficients = read_csv_file(config_data.Links_CLOTHING_SC)

        pt_scores_copy = pt_scores.iloc[:, 1:].copy()

        preprocess_scores_df(pt_scores_copy, "Person ID")

        b5._priority_calculation(
            df_files=pt_scores_copy,
            correlation_coefficients=df_correlation_coefficients,
            col_name_ocean="Trait",
            threshold=threshold_consumer_preferences,
            number_priority=number_priority,
            number_importance_traits=number_importance_traits,
            out=False,
        )

        df_files_priority = b5.df_files_priority_.copy()
        df_files_priority.reset_index(inplace=True)

        df = apply_rounding_and_rename_columns(df_files_priority.iloc[:, 1:])

        preprocess_scores_df(df, "Person ID")

        df_hidden = df.drop(columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS)

        df_hidden.to_csv(consumer_preferences(practical_subtasks))

        df_hidden.reset_index(inplace=True)

        person_id = int(df_hidden.iloc[0]["Person ID"]) - 1

        return (
            gr.Row(visible=True),
            gr.Column(visible=True),
            dataframe(
                headers=df_hidden.columns.tolist(),
                values=df_hidden.values.tolist(),
                visible=True,
            ),
            files_create_ui(
                consumer_preferences(practical_subtasks),
                "single",
                [".csv"],
                config_data.OtherMessages_EXPORT_CP,
                True,
                False,
                True,
                "csv-container",
            ),
            gr.Accordion(visible=False),
            gr.HTML(visible=False),
            dataframe(visible=False),
            video_create_ui(
                value=files[person_id],
                file_name=Path(files[person_id]).name,
                label="Best Person ID - " + str(person_id + 1),
                visible=True,
                elem_classes="video-sorted-container",
            ),
            html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False),
        )
    else:
        gr.Info(config_data.InformationMessages_NOTI_IN_DEV)

        return (
            gr.Row(visible=False),
            gr.Column(visible=False),
            dataframe(visible=False),
            files_create_ui(
                None,
                "single",
                [".csv"],
                config_data.OtherMessages_EXPORT_PS,
                True,
                False,
                False,
                "csv-container",
            ),
            gr.Accordion(visible=False),
            gr.HTML(visible=False),
            dataframe(visible=False),
            video_create_ui(visible=False),
            html_message(config_data.InformationMessages_NOTI_IN_DEV, False, True),
        )