""" File: calculate_practical_tasks.py Author: Elena Ryumina and Dmitry Ryumin Description: Event handler for Gradio app to calculate practical tasks. License: MIT License """ from app.oceanai_init import b5 import pandas as pd import re import gradio as gr from pathlib import Path from bs4 import BeautifulSoup # Importing necessary components for the Gradio app from app.config import config_data from app.video_metadata import video_metadata from app.mbti_description import MBTI_DESCRIPTION, MBTI_DATA from app.data_init import df_traits_priority_for_professions from app.utils import ( read_csv_file, apply_rounding_and_rename_columns, preprocess_scores_df, get_language_settings, extract_profession_weights, ) from app.components import ( html_message, dataframe, files_create_ui, video_create_ui, textbox_create_ui, ) def colleague_type(subtask): return "minor" if "junior" in subtask.lower() else "major" def consumer_preferences(subtask): return ( config_data.Filenames_CAR_CHARACTERISTICS if "mobile device" in subtask.lower() else config_data.Filenames_MDA_CATEGORIES ) def remove_parentheses(s): return re.sub(r"\s*\([^)]*\)", "", s) def extract_text_in_parentheses(s): result = re.search(r"\(([^)]+)\)", s) if result: return result.group(1) else: return None def compare_strings(original, comparison, prev=False): result = [] prev_class = None for orig_char, comp_char in zip(original, comparison): curr_class = "true" if orig_char == comp_char else "err" if not prev: result.append(f"{comp_char}") else: if curr_class != prev_class: result.append("" if prev_class else "") result.append(f"") prev_class = curr_class result.append(comp_char) return f"{''.join(result + [f'' if prev_class else ''])}" def create_person_metadata(person_id, files, video_metadata): if ( Path(files[person_id]).name in video_metadata and config_data.Settings_SHOW_VIDEO_METADATA ): person_metadata_list = video_metadata[Path(files[person_id]).name] return ( gr.Column(visible=True), gr.Row(visible=True), gr.Row(visible=True), gr.Image(visible=True), textbox_create_ui( person_metadata_list[0], "text", "First name", None, None, 1, True, False, True, False, 1, False, ), gr.Row(visible=True), gr.Image(visible=True), textbox_create_ui( person_metadata_list[1], "text", "Last name", None, None, 1, True, False, True, False, 1, False, ), gr.Row(visible=True), gr.Row(visible=True), gr.Image(visible=True), textbox_create_ui( person_metadata_list[2], "email", "Email", None, None, 1, True, False, True, False, 1, False, ), gr.Row(visible=True), gr.Image(visible=True), textbox_create_ui( person_metadata_list[3], "text", "Phone number", None, None, 1, True, False, True, False, 1, False, ), ) else: return ( gr.Column(visible=False), gr.Row(visible=False), gr.Row(visible=False), gr.Image(visible=False), textbox_create_ui(visible=False), gr.Row(visible=False), gr.Image(visible=False), textbox_create_ui(visible=False), gr.Row(visible=False), gr.Row(visible=False), gr.Image(visible=False), textbox_create_ui(visible=False), gr.Row(visible=False), gr.Image(visible=False), textbox_create_ui(visible=False), ) def event_handler_calculate_practical_task_blocks( language, type_modes, files, video, practical_subtasks, pt_scores, dropdown_mbti, threshold_mbti, threshold_professional_skills, dropdown_professional_skills, target_score_ope, target_score_con, target_score_ext, target_score_agr, target_score_nneu, equal_coefficient, number_priority, number_importance_traits, threshold_consumer_preferences, number_openness, number_conscientiousness, number_extraversion, number_agreeableness, number_non_neuroticism, ): lang_id, _ = get_language_settings(language) if type_modes == config_data.Settings_TYPE_MODES[1]: files = [video] if practical_subtasks.lower() == "16 personality types of mbti": df_correlation_coefficients = read_csv_file(config_data.Links_MBTI) pt_scores_copy = pt_scores.iloc[:, 1:].copy() preprocess_scores_df(pt_scores_copy, config_data.Dataframes_PT_SCORES[0][0]) if type_modes == config_data.Settings_TYPE_MODES[0]: b5._professional_match( df_files=pt_scores_copy, correlation_coefficients=df_correlation_coefficients, personality_type=remove_parentheses(dropdown_mbti), threshold=threshold_mbti, out=False, ) df = apply_rounding_and_rename_columns(b5.df_files_MBTI_job_match_) df_hidden = df.drop( columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS + config_data.Settings_DROPDOWN_MBTI_DEL_COLS ) df_hidden.rename( columns={ "Path": "Filename", "MBTI": "Personality Type", "MBTI_Score": "Personality Type Score", }, inplace=True, ) df_copy = df_hidden.copy() df_copy["Personality Type"] = df_copy["Personality Type"].apply( lambda x: "".join(BeautifulSoup(x, "html.parser").stripped_strings) ) df_copy.to_csv(config_data.Filenames_MBTI_JOB, index=False) df_hidden.reset_index(inplace=True) person_id = ( int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1 ) short_mbti = extract_text_in_parentheses(dropdown_mbti) mbti_values = df_hidden["Personality Type"].tolist() df_hidden["Personality Type"] = [ compare_strings(short_mbti, mbti, False) for mbti in mbti_values ] person_metadata = create_person_metadata(person_id, files, video_metadata) elif type_modes == config_data.Settings_TYPE_MODES[1]: all_hidden_dfs = [] for dropdown_mbti in config_data.Settings_DROPDOWN_MBTI: b5._professional_match( df_files=pt_scores_copy, correlation_coefficients=df_correlation_coefficients, personality_type=remove_parentheses(dropdown_mbti), threshold=threshold_mbti, out=False, ) df = apply_rounding_and_rename_columns(b5.df_files_MBTI_job_match_) df_hidden = df.drop( columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS + config_data.Settings_DROPDOWN_MBTI_DEL_COLS + config_data.Settings_DROPDOWN_MBTI_DEL_COLS_WEBCAM ) df_hidden.insert(0, "Popular Occupations", dropdown_mbti) df_hidden.rename( columns={ "MBTI": "Personality Type", "MBTI_Score": "Personality Type Score", }, inplace=True, ) short_mbti = extract_text_in_parentheses(dropdown_mbti) mbti_values = df_hidden["Personality Type"].tolist() df_hidden["Personality Type"] = [ compare_strings(short_mbti, mbti, False) for mbti in mbti_values ] all_hidden_dfs.append(df_hidden) df_hidden = pd.concat(all_hidden_dfs, ignore_index=True) df_hidden = df_hidden.sort_values( by="Personality Type Score", ascending=False ) df_hidden.reset_index(drop=True, inplace=True) df_copy = df_hidden.copy() df_copy["Personality Type"] = df_copy["Personality Type"].apply( lambda x: "".join(BeautifulSoup(x, "html.parser").stripped_strings) ) df_copy.to_csv(config_data.Filenames_MBTI_JOB, index=False) person_id = 0 person_metadata = create_person_metadata(person_id, files, video_metadata) existing_tuple = ( gr.Row(visible=True), gr.Column(visible=True), dataframe( headers=df_hidden.columns.tolist(), values=df_hidden.values.tolist(), visible=True, ), files_create_ui( config_data.Filenames_MBTI_JOB, "single", [".csv"], config_data.OtherMessages_EXPORT_MBTI, True, False, True, "csv-container", ), gr.Accordion( label=config_data.Labels_NOTE_MBTI_LABEL, open=False, visible=True, ), gr.HTML(value=MBTI_DESCRIPTION, visible=True), dataframe( headers=MBTI_DATA.columns.tolist(), values=MBTI_DATA.values.tolist(), visible=True, elem_classes="mbti-dataframe", ), gr.Column(visible=True), video_create_ui( value=files[person_id], file_name=Path(files[person_id]).name, label="Best Person ID - " + str(person_id + 1), visible=True, elem_classes="video-sorted-container", ), html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False), ) return existing_tuple[:-1] + person_metadata + existing_tuple[-1:] elif practical_subtasks.lower() == "professional groups": if type_modes == config_data.Settings_TYPE_MODES[0]: sum_weights = sum( [ number_openness, number_conscientiousness, number_extraversion, number_agreeableness, number_non_neuroticism, ] ) if sum_weights != 100: gr.Warning( config_data.InformationMessages_SUM_WEIGHTS.format(sum_weights) ) return ( gr.Row(visible=False), gr.Column(visible=False), dataframe(visible=False), files_create_ui( None, "single", [".csv"], config_data.OtherMessages_EXPORT_PS, True, False, False, "csv-container", ), gr.Accordion(visible=False), gr.HTML(visible=False), dataframe(visible=False), gr.Column(visible=False), video_create_ui(visible=False), gr.Column(visible=False), gr.Row(visible=False), gr.Row(visible=False), gr.Image(visible=False), textbox_create_ui(visible=False), gr.Row(visible=False), gr.Image(visible=False), textbox_create_ui(visible=False), gr.Row(visible=False), gr.Row(visible=False), gr.Image(visible=False), textbox_create_ui(visible=False), gr.Row(visible=False), gr.Image(visible=False), textbox_create_ui(visible=False), html_message( config_data.InformationMessages_SUM_WEIGHTS.format(sum_weights), False, True, ), ) else: b5._candidate_ranking( df_files=pt_scores.iloc[:, 1:], weigths_openness=number_openness, weigths_conscientiousness=number_conscientiousness, weigths_extraversion=number_extraversion, weigths_agreeableness=number_agreeableness, weigths_non_neuroticism=number_non_neuroticism, out=False, ) df = apply_rounding_and_rename_columns(b5.df_files_ranking_) df_hidden = df.drop( columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS ) df_hidden.to_csv(config_data.Filenames_POTENTIAL_CANDIDATES) df_hidden.reset_index(inplace=True) person_id = ( int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1 ) person_metadata = create_person_metadata( person_id, files, video_metadata ) elif type_modes == config_data.Settings_TYPE_MODES[1]: all_hidden_dfs = [] for dropdown_candidate in config_data.Settings_DROPDOWN_CANDIDATES[:-1]: weights, _ = extract_profession_weights( df_traits_priority_for_professions, dropdown_candidate, ) sum_weights = sum(weights) if sum_weights != 100: gr.Warning( config_data.InformationMessages_SUM_WEIGHTS.format(sum_weights) ) return ( gr.Row(visible=False), gr.Column(visible=False), dataframe(visible=False), files_create_ui( None, "single", [".csv"], config_data.OtherMessages_EXPORT_PS, True, False, False, "csv-container", ), gr.Accordion(visible=False), gr.HTML(visible=False), dataframe(visible=False), gr.Column(visible=False), video_create_ui(visible=False), gr.Column(visible=False), gr.Row(visible=False), gr.Row(visible=False), gr.Image(visible=False), textbox_create_ui(visible=False), gr.Row(visible=False), gr.Image(visible=False), textbox_create_ui(visible=False), gr.Row(visible=False), gr.Row(visible=False), gr.Image(visible=False), textbox_create_ui(visible=False), gr.Row(visible=False), gr.Image(visible=False), textbox_create_ui(visible=False), html_message( config_data.InformationMessages_SUM_WEIGHTS.format( sum_weights ), False, True, ), ) else: b5._candidate_ranking( df_files=pt_scores.iloc[:, 1:], weigths_openness=weights[0], weigths_conscientiousness=weights[1], weigths_extraversion=weights[2], weigths_agreeableness=weights[3], weigths_non_neuroticism=weights[4], out=False, ) df = apply_rounding_and_rename_columns(b5.df_files_ranking_) df_hidden = df.drop( columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS + config_data.Settings_DROPDOWN_MBTI_DEL_COLS_WEBCAM ) df_hidden.insert(0, "Professional Group", dropdown_candidate) all_hidden_dfs.append(df_hidden) df_hidden = pd.concat(all_hidden_dfs, ignore_index=True) df_hidden.rename( columns={ "Candidate score": "Summary Score", }, inplace=True, ) df_hidden = df_hidden.sort_values(by="Summary Score", ascending=False) df_hidden.reset_index(drop=True, inplace=True) df_hidden.to_csv( config_data.Filenames_POTENTIAL_CANDIDATES, index=False ) person_id = 0 person_metadata = create_person_metadata( person_id, files, video_metadata ) existing_tuple = ( gr.Row(visible=True), gr.Column(visible=True), dataframe( headers=df_hidden.columns.tolist(), values=df_hidden.values.tolist(), visible=True, ), files_create_ui( config_data.Filenames_POTENTIAL_CANDIDATES, "single", [".csv"], config_data.OtherMessages_EXPORT_PG, True, False, True, "csv-container", ), gr.Accordion(visible=False), gr.HTML(visible=False), dataframe(visible=False), gr.Column(visible=True), video_create_ui( value=files[person_id], file_name=Path(files[person_id]).name, label="Best Person ID - " + str(person_id + 1), visible=True, elem_classes="video-sorted-container", ), html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False), ) return existing_tuple[:-1] + person_metadata + existing_tuple[-1:] elif practical_subtasks.lower() == "professional skills": df_professional_skills = read_csv_file(config_data.Links_PROFESSIONAL_SKILLS) b5._priority_skill_calculation( df_files=pt_scores.iloc[:, 1:], correlation_coefficients=df_professional_skills, threshold=threshold_professional_skills, out=False, ) df = apply_rounding_and_rename_columns(b5.df_files_priority_skill_) if type_modes == config_data.Settings_TYPE_MODES[0]: professional_skills_list = ( config_data.Settings_DROPDOWN_PROFESSIONAL_SKILLS.copy() ) professional_skills_list.remove(dropdown_professional_skills) del_cols = [] elif type_modes == config_data.Settings_TYPE_MODES[1]: professional_skills_list = [] del_cols = config_data.Settings_DROPDOWN_MBTI_DEL_COLS_WEBCAM df_hidden = df.drop( columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS + professional_skills_list + del_cols ) if type_modes == config_data.Settings_TYPE_MODES[0]: df_hidden = df_hidden.sort_values( by=[dropdown_professional_skills], ascending=False ) elif type_modes == config_data.Settings_TYPE_MODES[1]: df_hidden = df_hidden.melt( var_name="Professional Skill", value_name="Summary Score" ) df_hidden = df_hidden.sort_values(by=["Summary Score"], ascending=False) df_hidden.reset_index(drop=True, inplace=True) df_hidden.to_csv(config_data.Filenames_PT_SKILLS_SCORES) if type_modes == config_data.Settings_TYPE_MODES[0]: person_id = ( int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1 ) elif type_modes == config_data.Settings_TYPE_MODES[1]: person_id = 0 person_metadata = create_person_metadata(person_id, files, video_metadata) existing_tuple = ( gr.Row(visible=True), gr.Column(visible=True), dataframe( headers=df_hidden.columns.tolist(), values=df_hidden.values.tolist(), visible=True, ), files_create_ui( config_data.Filenames_PT_SKILLS_SCORES, "single", [".csv"], config_data.OtherMessages_EXPORT_PS, True, False, True, "csv-container", ), gr.Accordion(visible=False), gr.HTML(visible=False), dataframe(visible=False), gr.Column(visible=True), video_create_ui( value=files[person_id], file_name=Path(files[person_id]).name, label="Best Person ID - " + str(person_id + 1), visible=True, elem_classes="video-sorted-container", ), html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False), ) return existing_tuple[:-1] + person_metadata + existing_tuple[-1:] elif ( practical_subtasks.lower() == "finding a suitable junior colleague" or practical_subtasks.lower() == "finding a suitable senior colleague" ): df_correlation_coefficients = read_csv_file( config_data.Links_FINDING_COLLEAGUE, ["ID"] ) b5._colleague_ranking( df_files=pt_scores.iloc[:, 1:], correlation_coefficients=df_correlation_coefficients, target_scores=[ target_score_ope, target_score_con, target_score_ext, target_score_agr, target_score_nneu, ], colleague=colleague_type(practical_subtasks), equal_coefficients=equal_coefficient, out=False, ) df = apply_rounding_and_rename_columns(b5.df_files_colleague_) df_hidden = df.drop(columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS) df_hidden.to_csv( colleague_type(practical_subtasks) + config_data.Filenames_COLLEAGUE_RANKING ) df_hidden.reset_index(inplace=True) person_id = int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1 person_metadata = create_person_metadata(person_id, files, video_metadata) existing_tuple = ( gr.Row(visible=True), gr.Column(visible=True), dataframe( headers=df_hidden.columns.tolist(), values=df_hidden.values.tolist(), visible=True, ), files_create_ui( colleague_type(practical_subtasks) + config_data.Filenames_COLLEAGUE_RANKING, "single", [".csv"], config_data.OtherMessages_EXPORT_WT, True, False, True, "csv-container", ), gr.Accordion(visible=False), gr.HTML(visible=False), dataframe(visible=False), gr.Column(visible=True), video_create_ui( value=files[person_id], file_name=Path(files[person_id]).name, label="Best Person ID - " + str(person_id + 1), visible=True, elem_classes="video-sorted-container", ), html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False), ) return existing_tuple[:-1] + person_metadata + existing_tuple[-1:] elif ( practical_subtasks.lower() == "car characteristics" or practical_subtasks.lower() == "mobile device application categories" or practical_subtasks.lower() == "clothing styles" ): if practical_subtasks.lower() == "car characteristics": df_correlation_coefficients = read_csv_file( config_data.Links_CAR_CHARACTERISTICS, ["Style and performance", "Safety and practicality"], ) elif practical_subtasks.lower() == "mobile device application categories": df_correlation_coefficients = read_csv_file( config_data.Links_MDA_CATEGORIES ) elif practical_subtasks.lower() == "clothing styles": df_correlation_coefficients = read_csv_file(config_data.Links_CLOTHING_SC) if type_modes == config_data.Settings_TYPE_MODES[1]: number_priority = df_correlation_coefficients.columns.size - 1 number_importance_traits = 5 pt_scores_copy = pt_scores.iloc[:, 1:].copy() preprocess_scores_df(pt_scores_copy, config_data.Dataframes_PT_SCORES[0][0]) b5._priority_calculation( df_files=pt_scores_copy, correlation_coefficients=df_correlation_coefficients, col_name_ocean="Trait", threshold=threshold_consumer_preferences, number_priority=number_priority, number_importance_traits=number_importance_traits, out=False, ) df_files_priority = b5.df_files_priority_.copy() df_files_priority.reset_index(inplace=True) df = apply_rounding_and_rename_columns(df_files_priority.iloc[:, 1:]) preprocess_scores_df(df, config_data.Dataframes_PT_SCORES[0][0]) if type_modes == config_data.Settings_TYPE_MODES[0]: del_cols = [] elif type_modes == config_data.Settings_TYPE_MODES[1]: del_cols = config_data.Settings_DROPDOWN_MBTI_DEL_COLS_WEBCAM df_hidden = df.drop( columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS + del_cols ) if type_modes == config_data.Settings_TYPE_MODES[1]: df_hidden = df_hidden.T df_hidden = df_hidden.head(-number_importance_traits) df_hidden = df_hidden.reset_index() df_hidden.columns = ["Category", "Priority"] df_hidden.to_csv(consumer_preferences(practical_subtasks)) df_hidden.reset_index( drop=True if type_modes == config_data.Settings_TYPE_MODES[1] else False, inplace=True, ) if type_modes == config_data.Settings_TYPE_MODES[0]: person_id = ( int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1 ) elif type_modes == config_data.Settings_TYPE_MODES[1]: person_id = 0 person_metadata = create_person_metadata(person_id, files, video_metadata) existing_tuple = ( gr.Row(visible=True), gr.Column(visible=True), dataframe( headers=df_hidden.columns.tolist(), values=df_hidden.values.tolist(), visible=True, ), files_create_ui( consumer_preferences(practical_subtasks), "single", [".csv"], config_data.OtherMessages_EXPORT_CP, True, False, True, "csv-container", ), gr.Accordion(visible=False), gr.HTML(visible=False), dataframe(visible=False), gr.Column(visible=True), video_create_ui( value=files[person_id], file_name=Path(files[person_id]).name, label="Best Person ID - " + str(person_id + 1), visible=True, elem_classes="video-sorted-container", ), html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False), ) return existing_tuple[:-1] + person_metadata + existing_tuple[-1:] else: gr.Info(config_data.InformationMessages_NOTI_IN_DEV) return ( gr.Row(visible=False), gr.Column(visible=False), dataframe(visible=False), files_create_ui( None, "single", [".csv"], config_data.OtherMessages_EXPORT_PS, True, False, False, "csv-container", ), gr.Accordion(visible=False), gr.HTML(visible=False), dataframe(visible=False), gr.Column(visible=False), video_create_ui(visible=False), gr.Column(visible=False), gr.Row(visible=False), gr.Row(visible=False), gr.Image(visible=False), textbox_create_ui(visible=False), gr.Row(visible=False), gr.Image(visible=False), textbox_create_ui(visible=False), gr.Row(visible=False), gr.Row(visible=False), gr.Image(visible=False), textbox_create_ui(visible=False), gr.Row(visible=False), gr.Image(visible=False), textbox_create_ui(visible=False), html_message(config_data.InformationMessages_NOTI_IN_DEV, False, True), )